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ABSTRACT

The time-harmonic analysis of three boundary value problems con-
taining semi-infinite boundaries is presented. The first problem considered
is a parallel plate waveguide with one plate truncated and radiating into free
space. The excitation of a dielectric slab and the excitation of an isotropic,
incompressible, plasma slab by means of a parallel plate waveguide with
one plate truncated are the second and third problems analyzed, respectively,
Roth TE and TEM polarizations are €onsidered in these open-region problems.

A function of a complex variable is factored in each of these Wiener-
Hopf type boundary value problems. The function is analytic in a strip and is
factored into a product of two functions. One of these functions is analytic in
a half-plante while the other is analytic in the adjacent half-plane with an over-
lap in the regions of analyticity coinciding with the strip. This factorization is
obtained by a technique developed in this work.

The technique obtains the factorization for the open-region problem
from a function and its factorization that occurs in a related closed-region
problem. A closed-region problem is one whose transverse dimensions are
finite. The chosen closed-region boundary value problem yields a function of
a complex variable which can be factored. The factorization of the function
for the open-region boundary value problem is obtained by taking the limit, as
a parameter approaches infinity, of the function and factorization appropriate
to the closed-region structure. By this means the factorization and hence the

solution to the open-region boundary value problem is obtained.




It ig also found wnat the lirniting procedure may be used to obtain more
than just the open-region factorization. It is shown that the limit of the com-
Plete closed-region solution becomes the open-region solution. Hence, this
yields oue possible method for the solution of problems of this type.

The results of the numerical computations are presented. These in-
clude the average power rerlected in the waveguide, the average power radiated
in the space wave, the average power transmitted by the surface waves, and

the radiation pattern of the space wave.
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1. INTRODUCTION

The time-harmonic analys.s of certain radiation and diffraction prob-

lems with semi-infinite boundaries requires solutions of the steady-state wave
[

equation satisfying various boundary conditions. This class of problems :s con-

ventionally formulated in terms of the Wiener-Hop{ technique, that is, at some

: P
point in the analysis a complex variable equation is solved by analytic continua-

tion, * An exhaustive discussion and numerous illustrations of this techniquc may
. I

be found in Noble [1958], i

Difficulty v:th the Wirner-Hopf technique is encountered because 1 fac-

torization of 2 function of a complex variable must l;e made. This function of a
complex var:able, hick is analytic in a strip, must. be factored ix;xto a product
of two functions., One function of the product is ana_iy’,ir. in a half-plane while
the otter 1s analytic in the adiacent half-plane, .mfh .;',m overlap in the reyions of
analyticity coraciding with the strip. ‘

In tkis work a C-R boundary value problernj% will refer to a closed-region
boundar‘y value problem (one whose transverse diménsions are finite; see Fig. 2,
for example). An C-R boundary value problem meains an open region boundary
value problem (one in which radiation may occur; sée Fig. 1, for example)}.

The factorizat.on in the case of a C-R boux;dary value problem may be
obtain~d by using the infinite product expansion of an integral (entire) function ;
sce for example Titchmarsh [1932]). This results ffom the fact that the function

1s a ratio of two intcgral functions. Tre function to be factored in the case of an

- ST T e Lasaea g i o A .- ~ —
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O-R brundery value problem contains branch line singularities and recourse to a
formal factorization procedure, for example Noble [1958], may be made. How-
ever, as usuzlly occurs with such procedures, specific results are difficult to
obtain except in a few simple cases.

The possibility of attacking an O-R boundary value problem through a
rzlated C-R boundary value problem, which by its nature is easier to analyze,
has been suggested and attempted to a limited extent by various authors. Noble
[1958] expressed interest in knowing how far the results for a parallel plate
duct (semi-infinite parallel plate waveguide) enclosed in a larger paraliel piate
waveguide, with a finite (but large) spacing between the plates, could be used to
approximate the results near the mouth of the parallel plate duct when radiating
in unbounded space. Talanov [1959], desiring the analysis of surfave wave
launching in a dielectric slab backed by a perfect conductor by means of a semi-
infinite parallel plate waveguide, enclosed the O-R structure in a larger parallel
plate waveguide. This procedure reduced the O-R structure to a C-R structure.
He then analyzed this C-R structure and calculated the desired field quantities
for increasing values of the spacing between the plates of the parallel plate wave-
guide. He suggested that the results obtained for the C-R structure are in the
limit, as the spacing between the plates of the parallel plate waveguide becomes
large, the results of the O-R problem. Mittra and Karjala [1964] showed that
the expression for the reflection coefficient »f a parallel plate duct enclosed in a

larger parallel plate waveguide yields, in the limit of the waveguide walls ap-




proaching infmity, tke «xpression for the reflection coefficient ;n the duct when
radiating into free space. Mittra and VinBlaricum [1965] numerically calcu-
lated the reflection coefficient in the duct enclosed in the larger parallel plate
wavegu 'de and showed that *he numerical ralues approached, as the spacing of
the plates ot the waveguile bacame larg«, the known numerical value of the re-
flection coefficient for the duct radiating into free space. Mitira and Ba‘es
[1965] us=d a limiting procedure to obta:n an extension of the function-theoretic
technique introduced by Wkritehead [1951]. The limut, as a dimension became
infinitely large, of a certain function that occurs :n a related C-R problem gave
the desired unknown function necessary in the O-R problem, The mode match-
ing technique was used in that analvsis.

The ex*tension of a C-R toundarv value problem soluticn to vield the
solution of an O-R boundary value probler: is expected 1' one rak=sg into account
the physical pbenomenon occurring, For example, cons.der a source in a par-
allel plate waveguide where the medium has a sligh’ loss, At any location A
within the wavegulde the field 3s made up 0of two componerts: a direct wave from
the source and reflected waves from the boundarv. The magn-tude of the re-
flected waves at A, as *he spacing of th» waveguide walls approaches infin:'y,
would approach zero due to the loss in *the medium, Therefore, point A would
see only the incident field in the lymit., That is, we are 1. 't with . source radiat-
ing in an unbounded region. The idea of a slight loss 1n the mmedium 1s not re-

strictive. When the analysis is completed 1the loss is permitted to be as small




as desired, in fact, zero. The inclusion of the loss is usually used regardlzss
of the method of solutior of these problemr.s.

This work determines a method by which the O-R factorization may be
obtained from a related C-R problem. The method invoives a limit, as a pa=
rameter approaches infinity. as suggested by the physics of these problems.
The choser C-R boundury value problam yieids a function of a complex variable
which cun be factored. The factorization of the function for the O-R boundary
value problem is obtained by taking the limit, as the transversc dimension ap-
proaches infinity, of the function and factorization appropriate to the chosen C-R
structure. By this means the factorization and hence the solution to :he O-R
boundary value problem is obtained.

It is found that the limiting procedure may be used to obtain more than

just the O-R factorization. Itls Vs”howr‘l that the limit of the complete C-R solu-
tion becomes the O-R sclution. Herce, this yields one possible method for the
solution of proble.ns of this type. This is a rather useful method as the C-R so-
lution is usually readily obtained,

Cbviously there is more than one possibility for the choice of a C-R
structure. However, the results obtained for the O-R structure are unique since
the O-R soclution is a limit point of the C-R solutions. This result is expected
from the physics of the probiem which implies that the field reflected from a
boundary that is receding to infinity in a lossy medium will be zero in the vicin-

ity of the source. Hence, the boundary condition satisfied by the boundary that
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that recedes to infinity in the C-R structure is immaterial,

Tre first problem discussed :s the analysis of the fields asscciated
with a parallel plate waveguide having ke ‘op plate termuinated (serru-infinite).
The solution is obtained ‘n closed form and thus the method is clearly deron-
strated, Thre factor:zation is verified by reference to the solut.cn for the
fields oi a pa»allel pla*e duct obtained by Noble [1958], since the functicn to be
factored s tie same in each problem, The launching of surface waves on a di1-
electric slab with a relative dielectric cons:ant greater than une by means of a
semi-infinite parailel plate waveguide s analyzed. Solutions for both TE and
TEM excitations are obtained. Numerical results for the power reflected in
the waveguid=, power “rapped in the surface waves, power radiated by the space
wave, and also the radiation pattern of the space wave are obtained for various
parameters, The power results for the TEM excitation are compared with
thosc obtaned bv Angulo and Chang [1959] who worked with the formal factori-
zation procedure and the differences 1n *he results are noted. The final prob-
lem analyzed is the case where th= dielectric slab i1s replaced by an incom-
pressible, ic~tropic, plasma slab, This gives the possibility of a relative di-
electric constant less than one. Again, numerical results for th= power reflec-
ted in the waveguide, power radiated 1n *the space wave, and the radiation pat-
tern of the spac= wave are presented for various parameters. No trapped
waves can occur in this case,

The boundary value problems investigated here are formulated by a

R




method used by Jones [1950] as opposed to an integral equation approach. Four-
ier transforms are applied directly to the partial differential equation and the
complex variable equation is obtained without the use of an integral equation.

The integral equation approach would lead to equivalent results as the integral
equation would be of the Wiener-Hopf type; see for example Morse and Fesh-
bach [1953]. Jones' method also has the advantage that the application of the
edge condition, Meixner [1954], which is necessary in this type of problem, may
be clearly applied.

The usual method of calculating the far field is by means of saddle point
integration. However, the problems considered here are such that the far field
pattern may be obtained more directly by using an equivalent Huygen source in
the aperture. The far field pattern is then related to the Fourier transform of
this aperture distribution and in these problems becomes an evaluation of a

function on an interval.




2. RADIATION FROM A TRUNCATED PARALLEL PLATE VAVEGUIDE

2.1 Formulation of the Problem

The first problem considered is a parallel plate waveguide with one
plate truncated {semi-infinite) and radiating iito free space. The structure is
shown in Fig, 1. The incident field, in the parallel plute wavaguide section of
the structure, is taken to be the TEM mode with the magnetic field intensity
parallel to the walls of the structure. The case of a TE incident field is not
discussed in detail as the function to be factored wurns out to be the same as in
the TEM case. However, the TE case can be obtained from section 3.1 by set-
ting the relative dielectric constant (K ) to one.

The incident field is therefore the lowest ordcr TM mode.

» *

. -ikz
H;=e . osx < b (2.1)

)
We wish to find the electromagnetic field, which satisfy Maxwell's equation and
the necessary boundary conditions pertaining te this structure with a source as
given by (2. 1).

Maxwell's equations for a medium with loss and the time convention cho-

s€en are

Vxﬁz(-iwgo-}-dl)é ) Vx-E-_=z'wr,H (2.2)

The loss is due to the conductivity ( ¢, ) of the medium. From (2.2) it can be

< e time convention

A RX e T T
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Parallel plate waveguide with one plate terminated.




shown that the magnetic field intensity must satisfy

— 2 —
vH +khkH=o0 (2.3)

where
|/z .
k=(w"luce°+zw'uoo',) = k +%k2 (2. 4)
with kl > 0 and k2 > 0. Since the incident field is independent of the y-coordi-
nate and the entire structure is uniform with respect to the y-direction,the total

field will also be independent of y. Therefore the solution of (2.3) is equivalent

to solving the two-dimensional wave equation for the scalar potential ¢ ¢

2 2
d $¢ d de z = o
>t T 22t + R ¢t (2. 5)
All the field quantities are derivable from ¢ ¢ by letting
Hg = ¢t (2.6)
- | 3P
Yy 2.7
* (lw€,—-0) 92 (2. 7)
I — 3 %e (2. 8)

(iw€,— ) dx

Let
¢t= ¢i + 4’ (2. 9)

where ¢i is the incident field and ¢ is the scattered field. Obviously
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_iLz
¢i= e 5 0sx £b vV Z (2. 10)
¢; =

o ; b<x ,VZ (2. 10. a)

and ¢ must satisfy.

t X 2
3 9 3¢ K=o
+2% 4k 4=
3z az% ¢ (2.11)

The following boundary conditions on ¢f and hence on ¢ may be ob-
tained by recalling (2. 5} to (2. 9) and the fact that the walls of the structure are

perfect electric conductors:

a)éﬁtzo at x=o0,VZ = ¢ =0 at x=o y V2
ax oX

b)éﬂ:o at z=b)2>o:’£f_=c at 1-b,z>o
ox dx

c) ¢ continuous a'x b, 2 ¢ O =
' -2kZ
b(bro,2) —$lb-02)= € | Z <o

where f
. A )
¢“’*°J‘) - ‘f(x,z X=b~+0
x=b+o = b+ 5 where P oas arbitrarily small
d) 3% continuous at x ~ b, W 2 = MFJ = éQ..(.!:%..z.)
3x dx X

where Bé(b-to}?._) - 3@(1 Z)I
2x |

oz ix=b=0
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e ¢' and kence ¢ must be decaying waves since a loss has been in-
2 V2
cluded as p=( +2*) — ®  for x zb and for
Z< 0, o<x<b.
£ ¢ and |V¢‘ satisfies the edge condition, Meixner [1954], as the

edge of the plate 1s approached, that is, ¢ goes to zero as

ll'zand IVM as Z-l/z forx=b, z=0-7, T>o .
Define
ax = g+ 7 (2.12)
Bxa) = ~ 112
1 B e '
@(x,a.) éiz;a.)-? S_x,a. '\'7?_5,, q‘_z)z)e dz (2.13)
a .
13 a4
xa) =L dix,z) @ dz 2. 14
dx, ) = L o taz
ey A Wf ¢("12') € dz (2.15)
- o0
Fiza)= T + Joc,@ =L ””M e *dz (2. 16)
‘ + - T x

From “he behavior ot ¢ (x, z) for any given x as z +a> it can be deduced that
@(x}cl) is analvtc for 77 > —ka and @(x,c.) is analytic for 7< k. Hence
? - g

;(Z)m) for any given x, is analytic in the strip -k, & 7< kz.

2

The boundary conditions (except ¢), in view of definitions (2. 12} to

2. 16y mMmav now be written in terms of transforms as
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I
a.l) §x)=0o

{ \
b.1) &lbse,@) = J(b-0,@)=0

_ 3
c. 1) @_{b-ﬂ,‘l) - B(p-o)&) = - ¥im (x—k)

d. 1) i‘(l--fo,a) = §(b-o,2)
£1) $(ba)~ ' as o for 7 > -k2
+

-2
and ﬁ’“’,‘{) ~ a s « —»> oo 7C¢r 7 < kz
(Abelian theorem given in Noble [1958]). ,
Multiplying the wave equation (2, 11) by (2m7) € and integrat-
ing from —oo to @ with respect to z gives
?.§ : ) 2
X X -
dexa) " Pxa)=oa (2.17)
d x*
with
AN v 2\ Ve
2

The branch cuts used in (2. 18) and shown in Fig. 2 have been chosen so

that Y has a positive real part when -k£< 7Lk General solutions for

>
Q(Z,K.) satisfying (2. 17 . i o form convenient for applying the boundary

conditions are

Bixa) = Ala) Cesh{rz) + <) Sinhivx, | cEX<b (2. 19)

S

_ -Yx YXx . Pd
Pix,a)z 3@) e 4 Dla)€ © bs (2. 20)
The soa.uticon for ¢)(x, vy} is obtained, once the unknown funciiens A, B, C, and

D are found, by using the Fourter inv. rsiv. integral




san i el op o

r=Im(a)
| BRANCH CUT FOR
| 4 . 2
a- PLANE x Y = Ja- k
k
INVERSION CONTOURA
o = Re (a)
|
-k
Fig. 2 Choice of branch cuts tor Y a:-k&)l : anhd the contour

uscd an tne Fourter inversion integral.
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Al BTy
n
OIx,z )= == S ¥ € da (2. 21)
ZTr -y L7 b

The fact that @(X,a) is analytic in the strip requires that the path of integra-
tion be in th strip, that is, in (2. 21) -k2< 7L< kZ,'

The boundary condition (e) and the fact that Y has a positive real part
for -kz <7L k2 requires D(& ) to be set to zero. Likewise boundary condition

(a. 1} requires C(a@ ) to be zero. Now at x = b we may write

Ble-o) + éib-o) = H Coshl(vk) (2. 22)
-Yb
@_(L-,-rc)-g- Q‘*(_bﬂ'o) - B € 2, 23)
4 |
Ele-0) 4 @+('c'0)= Y A Sink (vh) (2. 24)
‘ . -\'b
Z(brol +Ebre) ==Y B € (2. 25)

Note that the a in the argument of the functions in the above equations has not

been written for convenience and will not be if it does not lead to confusion.

However, § » &, B, and ¥ are still functions of & . Boundary conditions
| | )

(b. 1) and {d. 1) show that @(b.m):é(E-Q) and s now defined as é(b) .

That is,

| 2
$(b+o) = 3 (r-0) = @Lob) (2. 26)

R L vmas s e ama -
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and also
@'g_b+0) = é;(b—O) =0 (2. 26. a)
Using these facts in (2. 24) and (2. 25) yields
@l(b) =Y A Sinklvb)=-v B e—Yb (2,27)

The two unknown functions A and B are obtained by solving for the unknown

¢ (b

Define
= Qb+o) = @(b-o0) 2.28
D, §+ )= B (-0 (2. 28)
which is obviously analytic for 7 > -k, . Subtracting (2.22) and (2, 23) and

using (2. 27), (2.28), and the boundary condition (c. 1) yields

|
D, = 3 _ () (2. 29)
120 (a - k) b (a+k){@a—k) Lia)
where
_Yb i)
L(¢) _— e Slh" \Yb (Z, 30)

Y b

The function L has branch points at k and -k and (refer to the definition
of ) L is analytic for -k2< 7L k2 Therefore, L may be factored into the
product L+ L which holds in the strip. The function L+ is analytic for 7 > —k2

and L is analytic for 77< kz, This factorization is the difficult step in this
class of problems and it is obtained by a limiting procedure as discussed in sec-

tion 2. 3.

Let
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) R
@=E@ +E@ =  (a+k) L (2. 31)
Ela)=Ee vz (a-k)
with
E.Sa)"’_{i_ih( L"Q:)) ; analytic for 77< ]:c2 (2.32)
21T (a— '
['.1(0.)-_: sz(a_h) [(a.+h)\__$a)—2k L_._(k)]; analytic for 77>-k, (2.33)

Multiplying (2. 29} by (L+ (a)). (at k)andusing (2,31}, 2,32;, and (2. 33)

gives

|
$(b)
b(a—k) L(@

which holds in the strip -k2 <7< kzo The left side of (2. 34 is analytic for

D, (a+le) L.S'_a) Ela) = Ela) - (2. 34)

7> -k2 and the right side is analytic for 7 < kzo Therefore, one side is

the analytic continuation of the other and they may both be equa‘ed *o a function

J (@) which 15 analytic over the whole & - plane.

é_'_(b) _
e e - Y@

The application of the edge condition gives the unknown function J (& ). The fac-

: ‘ ‘ , , n . -1/2
torization obtained in section 2. 3 shows that L ta) betaves as @ / for

-1/2
A=+ , 7> -kz and L (&) behaves as & ' as a=»o, 7 < kz, The edge

(2, 35

D, (atk) l_jrct\ —Lwl = E@ -

-1 |
condition (f. 1) shows that D, behaves as @ as a+- o . 7 > -k2 and § (bj

-1/2 .
behaves as as a-e, 7< kz. The definitions of E and E,  given in (2,32}

. eman . e —




-1
and (2. 33), respectively, show that E behavesas g as a+® , 7< k, and

2
-1/2 .
x as a—~»w, 7 > -k.,. Therefore J(&), which is analy-

E+ behaves as 5
-1/2
a /

as qQ-»w, 7< k, and

tic in the whole of the & -plane, behaves as >

-1
as Q as Qe m», 7 > -kz. Hence from the extended form of Louiville's

theorem, for example Hille [1959], J(a ) must be identically zero, that is

Blb) = bEW@ (a—k) L@ (2. 36)

Use of (2.32) and (2. 27) gives

A, (x,a) = A(a) Cosh(¥x) = 3brk L1k L@ Cosh(vx)

{27 Y Sinh(rb) (2.37)
-Yx Yb—YX
; k) L@
B(x,a)= Bl € =- ibzk Lk L0 © (2. 38)

Tzt Y

The formal solution is obtained by inverting (2. 19) and (2. 20) and may be writ-

ten as

o+t 7 —iaz
¢(X)Z)=V_;ﬁ?"_w+,;—,—-ﬁ'(x‘cz)e da ;3 oex<hb 2.39)
@417 -1z
952) ?’El??‘ _gmwB'u'm) S ke (2. 40)

with -k2 £ 7T< k?_ in (2. 39) and (2. 40).

17
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2,2 Choice of a Closed-Region Structure

The factorization of L(a ), given by (2.30), is obtained in section 2.3
by taking the limit, as a parameter approaches infinity, of the function ana fac-
torization which occurs in a related C-R problem. The C-R structure should
yield a function whose factorization is obtainable and the limit of the function,
as the transverse dimension approaches infinity, should be the O-R function
(2. 30).

It should be pointed out that it is not necessary to resort to a C-R
structure to accomplish the factorization. It is certainly possible to intuitive-
ly choose a function which may be factored and be such that some sort of math-
ematical limiting process on the function will yield the O-R function. The
choice of a C-R structure seems to be the easier choice to make and has the
added advantage that all mathematical results must be consistent with the phys-
ical phenomenon.

The chosen C-R structure for this problem is shown in Fig. 3. The
choice of a related C-R structure is not unique. The one chosen here is con-
sidered to be the obvious one, that is, the simplest way to convert the O-R
structure to a C-R structure. The O-R structure is obtained from the C-R
structure by the limit of a, ¢ — o while maintaining a - ¢ = b.

The solution for the electromagnetic fields inside the C-R structure
is formulated in the same manner as for the O-R structure in section 2. 1. The

only major change is in the boundary condition (e) which must now be

- - . - . . ey g e —— - -



PERFECT CONDUCTORS

Hor €51 T, la

le

'WF"

Fig. 3

> r——.»~ -
!

Chosen C-R structure corresponding to Fig. 1.

T TN Y T I W g L, e -

19




e) Q_ﬁ:o at z=a,\/z=,’> é_@:o at x= &)VZ
dx 3T

or 1n terms of transforms
e. l) §|(a) a) =
This change will be reflected in the general solution for @ (x, @ in x 2 b,
that is, (2. 20) will now become

@(z,a.) = B(a) COSh[Y(Q‘Iﬁ+ D¢a) SinH[Y(o.—z); b<x <o.2.41)

Duplicating the arguments used i1n section 2. 1 will then give the following re-

sults:
Cay= D) =c (2,42
C(x a) = 9a) Coshlyx) = L?.k KiR) KL= Cosh (vx) 2. 43
12'" Y Sinh (Yb) :

22k KW K@) Coshly(a—0)]
(2 Y Sinh (Yc) (2. 44!

D x,a) = B@) CO.JILY(a-xj =—

(@) = K (a) Kla)= Sinh (Yh) Sinh (¥e)
f * ) e Sirh(va) 2.45)

where K(a ) 1s a ratio of integral function. Note that K{@) is actually mero-

morphic with poles at

W 1.
z T N
(2. 460

2 T2 i T
‘1=:(\?_l—a—.)> ’tz(wxl

and hence i1s analytic in the strip -k, £ 7‘<k2, Kialt is factored mnto K @)
L -

analytic for 77> -k, and K (@), analvtic for 77& k_ in section 2. 3. The

20
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-1/2
asymptotic behavior for K+(a) is chosen such that K+(CL)~ a as X->o00

for 7> —k2 and K (a )~ q-l/z as a—+o» for 7 < kz. With these condi-

tions the formal solution for the C-R structure is given by

a‘ri'/

-1az
4)(1}4):_1_ S C’.(z,cz) € daj o0<X<b
2T asir (2.47)
a)+i/ - L
= _| N Cx <O
Plx,z) Z7 | \(x,&) du,) L<x
-@o+17 (2.48)

with -k, £ 7°& K, in (2.46) and (2. 47).

2.3 Factorization Obtained by a Limiting Procedure on the Function Appro-
priate to the Closed-Region Problem

A formal solution for the EM-fields of the structure shown in Fig. 1
1s obtained once L+ and L_ of (2.30) are found. This factorization will be ob-
tained by talking the limit of K(@ ), given in (2, 45), and its factorization. Re-
call that we are interested in a factorization using functions whose common re-
gion of analyticity is the strip -k‘2 <7 (ImaQ)< k2 and whose product is L(Q)
for values of @ within the strip. This strip of analyticity for L{a ) is also the
strip of analyticity for K{(a@ ). Also recall t.at Y as defined in (2. 18) has a
positive real part for @ within the strip. Hence, for any @ of 1aterest

(within the strip), the limit, as suggested by the physics of the problem, gives

- - eew e, a e v ame m S S e
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Lim  K(a) = Lim Sirh(vb)  Sinh (Ye)
Ry - O e,c»w Y SinL\ (Y&)
*-¢c =b o.—-¢ =2b
or
-Yb
l..;h" K(CL\ = S\NE(YB) e = b L((-L)
&,c>mo Y (2 49
a-c=b
Sinec-
((G+27)c  =(+iTe)c -Yb
Liw il_vlr(YC) = L c - C = € (2.50-

A cl+n <. aCr@ . '
QLCIE ‘-’”L”(Yo‘.) a_)-cgb A ,.(d;‘f_z’r?*)a' —(62"-1754)&

\\e -
because Y= 0’1-—?_72 with @% > © for any g within the strip, Thus, the
‘uacuon to be facrorod for the O-R problem is the limit, as given by (2,49 of
o mimciien to be fuorored for the C-R problem. This fact enables us to ¢htam
'aoterizatien o0 L@, by *Ri1s llmiting procedure.
The “a oo zation of K{@*, given in (Z,45), may be realized b using

the 1ot gt K{e+ -~ a ratiwo of in'egra} functions. Hence, K‘G.) may be «x-

pressednrerp. 0 n‘atte products from which K*(CL) and K (@) may be con
ceracetly estegot ) The results are
_ _ab _a v
Ln'ﬂ’} TT a T{] -X(a
I+ ) e ’
K.,(.‘L)*\Sm kty S m(hll\ LIru '+ﬂﬂ)e ( Mni — = < - {2.51
Lk Sin(ka) | - a
1T(n+9—\e “n}
lz :‘31

K_(d) = K("CL)

*

whore:




2 :)_VZ . 2 2\"%
o= (F- ) - & (i) e
2 2 2 2 z "
a'n= <k -(;&r)) ) Nhg (k—(_né[) > (2. 54)
The exponential factors are inserted in the infinite products in order to make
them converge uniformly. The function X () is chesen to be analytic and to

-1/2

make K+(<I.) behave as @ as g-+o for 7> -kz as required in order to
be able to solve the Wiener-Hopf equation for the C-R problem. Tkhke function
X (c.) is obtained from a knowledge of the asymptotic form of K+(CL). The

asymptotic form of the infinite products is obtained by comparing them with

the infinite product

e
P(“ (2. 54. a)
M&

where r‘ (@) is tte Gamma function and [' is Euler’s constant. The asymp-
totic form of (2, 54. a) is obtained by the use of Sterling's formula. Since each
infinite product in equation (2. 52) behaves in the manner of

/A£,== int + Qn”') (2. 54. &)
b

for large n, their asymptotic form may be obtained from (2. 54. a) to yield

~
o e /b z '
[(a)—_%rg_[Cfn(%) H:In(%)] 1‘&2‘\ T + I, - '7’{») {2.54.¢)

The function ) (a ) results in K+( Q) behaving algebraicaliy for the

solution of the C-R problem. However, when merely using K(c ) to obtain the




°f

f.

O-R factorization it is not necessary to include this term. Its inclusion does

lead to the possibility of obtaining the O-R sclution from the C-R solution as

‘~11]1 be discussed in section 2. 5.

K () and hence K (&), without in-'uding tke X (x) term, may be
v -
expressed in ap alternate form. This will prove to be advantageous when lim-

1°s are to be taken. In particular, on¢ can write

I/z

Qo
T H{aQ)
Ka) = |Sinleb) S L) - Tr(|+5-) . e (2. 55
k —-un(ka.): P‘
with
H@) = Lim A -F(a.w\ 9(w) du
Nwo -T1 (2. 50)
where:
fla, ) = |n(l L. - (2,57
) \"7' (kz.‘_wz)v,_ (hl-—o)z’)‘ll
\ t
v Fl(w\) FLI'.J) -
and

a) F (v) has simple zeros at 3T 5 N={ 2  «e-
1 c 7 ) }

b) FZ(‘—‘) has simple zeros at n&r;
(g !
dis) gy - dRW

d) Z in the contour shown in Fig. 4 with o<r< 7/a y T< € < k;_‘

c) Fl’(..‘) =




/-BRANCH CUT FOR

Im(w) Juz-ki

Sk
7\
w - PLANE — I
(N+ [ND/C)) /0 €
w/a m/c | L_-
r T W Nmed  Relw!
e -

d =

-k

Fig. 4 Contour used in the representation of E*( a ) given by (. 553).
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¥* %
NT < d < (N + \:L*‘.c.'b]-rl)g

The functions. Fl(w) and Fz(w), may be identified with the functions
which, when set to zero, result in the characteristic equations which give the
transversc wave members for the regions b€ x< a, z >oand o< X < a,

z < o, respectively, in the C-R structure, Fig. 3. In this particular prob-
lem
Fl(w) = Sin («c) (2.59)
Fz(w) = Sin (wa) (2. 60)

That K{_(a.), given by (2. 55), is the same as K+(a. ), given by (2. 51)
mayv be versfied by integrating (2. 56). For any @ with 77> -kZ the integrand
in {2, 56" is analv*ic with respect tow in -k2 <Imw < k2 except for the simple

! t

poles at the zeros of Fl(w) and Fz(w). In this case F_ (w) and F‘2

1 (w) do not

have any poles within > ., Using the calculus of residues one obtains equal-
1*y between (2, 51, and (2. 55).
1
The expression for H (@) may be expanded further by integrating

along the patb of integration., That is

d+zé€ 0+2€ cf-Z(E‘k) o~ £ - €
Kl ‘ ‘
SIS S
2 4lie dyre  ori€ T A (2. 61)

Now

“*Y_Nb! means the largest integer in Nb .
L C | C

PY RS e om e . + e . e R Te p— e b N A a8
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o+2(e-r) 6-2€
C
+ ) =o |
0+i€ o-:(e-r) (2.62)

because the integrand is an odd function of w.

Also

j; = -t Res|, ., 6 = Qn(lﬁ-%_)—%'(i—l): ° (. 63)

d+ie

and

~ 1

because the integrand behaves as w  for large w.

Therefore

L oo , . .
H(cn:Zr:-f—i— %)“[f(m,g-ze)3(§-ze)"ﬁ(cz£}§+ze) 3(§+z&)-_] d¥ (2. 65)

1
where € is any positive number such that 0 < € < k_, thatis, H (&) is inde-

29
pendent of € . A useful representation for K{&) is now available and may be

written as

[H) + Hea)]
K(d) = SML\ (.Y_b.) Sin Uiu\_ e
Y Sin(ka) (2. 66)

1
with H (@ ) given by (2. 65).
A representation for L(&) for any @ within the strip, -k2< 7L kZ’

and from which L+ and L. may be chosen, is obtained by taking the limit of
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12.66) as a, ¢c-» g while maintaining a-c=b. The limit of the left side of

(2. 66) for values of @ within the strip 1s given by (2.49), that 1s, bL(a )

Now
2k b
Lim Sin (ke) = & 12,67
a.,C—» @ .
¢:C=b Sin (ko)
and izt

i
H(e) = aLglw H(a)

a-¢=b "_2a 68.

The function f{ @, , w" is independent of a, ¢ and the function g(g."‘.i € .. for

this problem, 1s

qegF i€) = cCoslccegie] _ oCos[atsFie)] 6o
Sin[c (gFi€] Sin (a(5 72€) °
Hence
i 3(5:i5)=$ib
%y~ (2,70
a-Cc =0
Define
. L) ! (e—z€) L (F+z2€)
— . 5e) — L
&9 = o ot oo J 5T a,‘ch:»oo B 2,70, a;
o—-c=b o—¢c=b (2. 70, as
€-—+>c
then
1
H(Q-) = S '7£(CL)0)) G—(w\ Jw (2.71)
w=o
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where

G (w's -bm 2,71 a)
It is interesting to observe the physical significance of {2, 7C. a’,

Gl(w) given by (2. 70. a} 1s equal to tbe difference of 3 and A,. A and A,
~ 4

1

are the inverses of the spacing of the zeros of F (uw} and lew . This 1s ex-

1
pected if one had worked with the infin:te product form of K(@'. The natyral

logarithm of Xi @) ‘would convert produc’s over n to sams of logarithms o »r n,
g A 2

One could ther change the summation to a sum over ar ‘a and nwr /¢, that is, *he

; . . i nrm
zeros of Fl(w; and FZ'-\w_}, As a and ¢ approach niintty, w = -%1_-1 and W, = ==
, : 1 , l
would approach continvous variahles @ anrdw . Also, im,»n - mw/a and Aw
1 ,
w/c would approachk dw and dw ', In the lirn:* one would ob'a'n
©0
I { A
.f Ffla, oy 1 — w > o
) )7 70
w=o Aw’; L wn e
but
\ I -
————— — Zv "3'

Comparing (2. 72) with (2, 71: rustifie¢ the ;n*erpretat.on of Gllw),,

This method could have heen used but 1t 1s not as convenlent or as suf-
ficiently general as the repres<ntanion given by equation +2, 5% wkhken analyzing
more difficult problems as in sections 3 and 4, However. it does provide a
check on the limat of g(;;L € . The difference of the in erse of the spacing of

the zeros of F‘l(w) and F _(0) can be calculated for increasing values of a, «,
[

g T S T S N 4 1 LT TR eI g oy
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a-c=b, and the result should approach the expression obtained for Gl(w),
(2. 70, a). The check in this case is trivial as the zeros of .Fl(w) and Fz(w) are
obvious,

The limit of (2. 66) and the results given in (2.49), (2.67), and (2. 7])

show that L(qQ, ) is

, sk [H@)+H(-a)]
LCa.)=______S"“J(‘tY‘°)-e . e 2. )

with H(@) given by (2. 71), The choice of L+( @) may now be made as

vz _gb ikb +H@)
= ih kE 5 3— i « 2 ird
L_g_a.) 5__‘;%9_) .&LQ + Pn) e = (2. 75)

and
L) =L.(a) (2. 76)
- <+
The range of analv*icity of .L_+(CL) can be deduced from the regions of analytici-
ty of the infinite product and H(@ j. The imaginary part of Bn, (2. 53), 1s great-

er than kZ and hence the infinite product in {2, 75) 1s analytic for 7 > -k

>
The function f{ @ , wj, {2. 57}, satisfies the conditions of theorem A, page 11,

Noble [19581 and also restated in the Appendiz. Hence H(a) is analytic for

7->-k., Therefore, L‘(cz.‘! is analytic for 77> -k

2 and L (@} is analytic

2
for 7 <L kZ’ the desired range of analyticity, The product of L. (&} and
L (@) is obviously L(&.).

The functions L (@) and L (@) can be arranged in a slightly differ-ni

form which is preferable for numerical calculations.

s - e ——— . - - . L e A v e . T Y e pp———n e




ita,

- -yh  [d@)-HE
Sm‘\(YL) < . e[ = ]
LB~ <% {GM‘:T Y 2,77
E(‘ /gh)e » .

g [ ap

Lla)= LLCU |_(a) =l ﬁ'(|+§.;)e:.nrr
" L (a)

In this seation ogration 2, 77 will not be used but sts form w1l be used in sec
tion 3,
Favaton (7. 71 may be &+ egrated to obtain HiQ.' and Fence 1. oL in

cloe -4 torm, The natare of Hia) n equascon (2. 71; mav te onta ned ones 1t

foMowrag integraton s periormed,

f A= wt)"‘) T w‘)";J e

Coasider *ne Lncuaer Q @, w)

(eZ_ W)z

Dla w) = wln(;+ < )-——%—|n(_|.‘<_:_w_)_

T

2 V2 'h a +‘ﬂq"—<l.-’? ('{kz—af'l et OJ)

. lhz_,wz -f-d' L

The branchk of 1a (k ~ w) rs crosen 1o be in rhe Jower half plare and 't -
hranch of 1n ik - @' is closen o he 1n the upprr half plane. Hence for anv a. .
suckt that 77>-k,, Q ‘. w.1s an an+’yuc function of w for *te Im (e = C.

The derivative of Q @, w, Witk respret tow for anv w n thrs range s

(W) — \n(\ +
ow

o 5 (o &8
) T e
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Therefore, the integral (2. 77. a) becomes

- -

Qla,w)

-ta +’-"£k -2Y In L_l-)

w=o h (2.71. Cy

and hence

Ha) = z y In(__ﬁ’_) +i.$-r_b —"lezk (2. 78)

and

vz gk __b.,_ Y In ( ) - X ()
: o0 nw
Lie)=sin(Rb)[ o+ 2)e X.e R
* kb | L=t P (2. 79
with L_(a,) = L+(- Q) and X(— Q)= -X (@). The principal determination of
the logarithm is used, that is, la (1) = 0. The unknown factor, exp. [-x (C!.a;

which must be analytic in 77> -kz, is added so that the asymptotic form of

L+(a,) is algebraic, The algebraic behavior of L+(¢). and hence L-(CL ), en-

sures algebraic behavior of J{Q.) and hence its determination in equation (2, 35}

Sv the extended form of Liouville's theorem.

For large (L in 7> -k, we have

2

i‘%—'Y ‘"(gﬁl) - ibv% \h(gf') (2.80:

The asymptotic form of the infinite product may be found by the use of equa-

‘ion (2. 54. a) and gives

. +ab aby_{ T _
. gk, ifebo2Rln(ge)-tE -
TH+2)e™"m ~a” e

{2.81}
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where [ is Euler's constant. Therefore if X (@ 1s chosen as

. - b
X@= 122 [r -2 + (28]

then

L
B
)
v
3
——
~—
o
)
C=1

(2,83

~1/2
with L {d'~ @ ' as q-=»o for 7 > -kz. The function L (&L ‘-&

. -1/2
with L 'Q'~ g ° as gqeo0 for 2L kz-

2.4 Solu.tion of *he Problem

Tre factoriza*ion given by equation (2. 83) and the transformed field
quantities g:ven by equations {2.37), (2.38, (2.39), and (2. 40" permit the de-
‘erm:nation of the field quantities of interest. The scattered fields within the

waveguide are g:ven by

ao¢£ 7 .
1 &y 4

. ( (@) Cosh¥x) !
=zbhl—(;) L ~a 22 da tofxLb, Z>0
¢(Z'Z) ar j . Y Sinh (Yb) ! /

e (2. 84)

with -k, £ 7 k,. Since z > 0 and the integrand has no branch cuts in the

——— v e .
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lower half plane, the path of integration may be closed in the lower half plane.
The solution for ¢ is then obtained by using the calculus of residues, for ex-
ample, the reflection coefficient, R, in the waveguide is given by the residue
at Q = -k.

R=-L (k)= -L, {k ) (2. 85)
Higher order reflected modes are available by the same procedure. Note
that once a resuit as given in equa‘ion (2.85), or those following in this section,
are reached k may be taken as real and equal to ko. This may be done because
k.2 is infitesimally small compared to k1 and the evaluation of a function at k

= o.NHoeol = ko.

is equivalent to its evaluation at kl

The fields for x> b and hence the radiated field is given by equation
(2.40) with B1 (x,a@ ) given by equaticn (2. 38). The function Bl(x, S-) has a
branch cut in both half planes and he .ce little is gained by closing the contour
by an infinite semicircle. The radiated fields, asymptotic behavior of db given
by equation (Z.'40), is usually obtained by an integration procedure known as
the saddle-point method, for example, Morse and Feshback [1953]. However,
in this class of problems the use of equivalence theorems for fields, for ex-

ample, Deschamps [1962], will prove to be more direct and convenient. The

field in the aperture is given by

o+ .
| -az
dloto,z)masy | Blbo) S da; V2 >
-+ 17 2. 86)
Recall that Hy (b+o, z)= ¢t(b t o, 2z) - Cb(b + o, z). Therefore, H in
Yy

- —_— e i - . ey T Ny T N

) 3
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the aperture is given by equation (2.86). The equivalent electric surface cur-
rent in the aperture is given b
P g y . * %
T=nxHA =£xH39 =Z ¢(b+o,2) &(x-b) (2.87
The actual far field is equal to the far field due to the equivalent electric cur-
rent 2J. The vector potential due to the current 2J is obtained by knowing

2
the asymptotic form of the Hankel function Ho( ) (kof) as described in Har-

rington [1961] and gives

. @ o a7 =
_ 1kolp R -2 L'rl.
R=€ z j S Plbto,Z,) bx-b) € dz dx, (2.88
“t27 70 Zz-0 XF -0
where:
- A ‘ A > . A
k:lqofos(e)z +1295'|n(6)1 'l?zz'*"x"‘ (2, 89,
T'-l“: 212+11£ t2.90:
- 1/
o= rz) (2.91)
Intcgrating (2, 88) with respect to X gives
. . . , ©o+7 :
_ z{’-’+—ake/a—zbo55'"(9) 0 _ikyZs ' —2a 2
A= e je ( j B.(bja,)€ da | dz, 12.92)

ihnf 2T T -0 —o+t7T

and hence

. é(x\ is the delta function,

SRR g gy - e e o T T : ct - ) e 0T
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N L )
£

_ +.lhwp-—:7.kob S'm(e)
H:% e 0 B!(b,-L,C'ose)

-iE /al (2,93)
From Maxwell's equirions we obhrair
H}j = -2k, Sin(6)
or
kP -t —ikb Sin(6)
Hy = -ezv i mike S «Bb,~k,Cos8) ¢ Sin(s)
ITF ' | (2. 94

In this problem H in the far field s
v

; 17 —2l,b Sinl9)
thp -t —tkbSi e
H3= e PY Zk DEL.+(_k6) ‘L-.'(kﬂ"‘os 9) (2095)
P
with 0 < < .

The real power reflected in *he wavegu:de and the real power radiatad
in the space wave are cbrainable once the number of medes propagating 1n the
waveguide are known, If the gurde dirmension and frequency of ope-ation aic
chosen so that only *fe TEM mode can propagate the results are;

>
Normalized Reflec'»d Power W IRl - ‘L K r {2, Y0
re', S

The novrmalized power radiato 1 :s goven by *F- Povnting victor,

a
= - 4
Norruahzed Rad.at < Power W we XH eop de £SA T
ra“ hob J , )
e=:
sin e the inciden® pom'risk b - @ . Now

(8] «
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£~ H

€, I

50

n
2
Wrad‘-‘"y iB(L,-k Ces0)+SinB | do
b v (2. 983
¥ 0 . ’
In this problem (2. 98) becomes
ar
b LGkl § ILtkCs o)) 4
W, =2Xpb ‘ S s 8. 0
ra = 5= ekl )t \ (2. 99)
The radiation pattern as a function of @ i- giver by

\Hsi - ‘&(b,-h Cos 2) « Sin 9‘ ic. 1. )

i nd in this problem is proportional to

'H, "'\L+(n, Cos 8)

(<. 101)
The numerical value for W , W , and the far fie. natterns ure
ref. raa.
giveu in section 4. Some of the equaticns in this section have becen ~btained,
with sufficient generality so that they will appiy ir the analyais of the problems
in section 3,

v

In this section . (@) and hence L. (@) were available in cicsed form.
Fiovscver, this is not always feasible as the integration usually cannot be carried
.t .ce ;*{a.} is obtained in clcsed form, for example (Z.83), the 'oss may

be srauced to zero, Setting dl to zero results in ka =0, kl 2 N s..-'J? ‘b' .

o

lalreicre, whlen 5‘1 = o, k= ko in (2. 83), The path of the Fcurier inver-




sion integral used in (2. 29} and (2, 40] wiien ¢ is greater than zero is shown

l
in Fig. 2. TLkis patr mus* Ye indented vhen sha Jo-s approaches zero, that is,

when k = X% the contour is shown in Fig. 5.

0

The equation for 1. (@’ rmust be ints rpre*ed ‘n a similar manner as

the Fourier invecrsicn integral wren the loss is reduced to zerc. Fer example,

H(a ) used in {2, 75) and defined by (2. 71} “ecomes, when x—>k ,
: o

Q) =-2 < C d
e C{ k‘—w'-) j’rk’;—-w’-‘} v (2.102)

o
with the contour 3 1 given by Fig. 4. .'r{ra'wew_fr., ne use is made of the inte-
gral form of H(a) giver by (&, 1Y and (2. 102) as tte clos=d form is available.
In the more difficult problerms, discussed in ’,r.‘.; following sections, the integral
form is used and the con’ours of integration must be interpreted as discussed

here.

2.5 Comments on the M:2thod

The factorization otiawned in cectron 2.3 lor L{ic) can be verified by
reference to the protlem of the parallel plan: duct discussed hy Noble [1958].
The function to b= factcred ;s the same 'n cach provlern, A comparison of the
factorization for L, girer bv sguat.on 17, 833, 'xn;j.!,v": Nohklels sulution, shows
that thqy are the Farme. He obtaar =d the (2 “or"za o not on L{a) directly but
on a function related to L{a ard t - us2 ol a formal factorization procedure,

The form oi L’ sktained Ly reean: of a limmiting procedure on K,
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BRANCH CUT FOR
a - PLANE /

Y= Ja?- k2

INVERSICN CONTOUR

N\ ko
ke N —c

Fig. 5 Branch cuts for Y and the Fourier inversion contour when

k —ek .
o
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Im(w)
BRANCH CUT FOR
w - PLANE E[ Jw?- i
- CONTOUR 2
-k=-kg ? K= ko[ '

S Re (w)

Fig. © Contour used in the integral representation of H( @),
(2.102), when k—e= ko-

PR L
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(2. 66), proved advantageous because of the generality of Hl(d.) given by equa-
tion (2. 56). In the problems discussed in section 3 it will be seen that g(w)
changes for the various problems and net f(&, v)., As already mentioned, a
check on the limit of g(f + 1&) is available because it is equal to the differ-
ence of the inverse of the spacing of the zeros of the characte:i-tic equations
Fl(w) and Fz(w). The form of Hl( a.), equation (2. 56), also applies to certain
other geometries involving coupled waveguides. It is found that in these cases
the form of (2. 56) remains unchanged. One needs only to substitute the char-
acteristic expressions for Fl(o:) and Fz(w) appropriate for the particular geom-
etry under consideration. For example, this method of solution should be applica-
ble for analyzing radiation from a semi-:nfinite circular waveguiie. The above
discussion brings out a strong similarity between cylindrical and parallel plate
waveguide problems that may not be apparent without a close lock at these prob-
lems.

The form of ]_,+ given by equation (2. 77) will also prove convenient
when numerical calculations are attempted in section 4.

The C-R problem has been used primarily to generate the O-R factor-
ization, However, the relationship between these two problems may even be
made more general. If the asymptotic form of K+( @), namely X(a_), is inclvded

in (2. 55) and hence in the limiting process, we obtain

. _
L, Kger =¥ L
&-:c=b
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This follows from the fact that the limit of the asymptotic form o K+( &) be-
com: -~ the asymptotic form of L+(¢)- That is, for K (@), the X () is

given by (2. 54. c), namely

X(a)=.;._ [chnl"L +\,\n(aﬂ+|_-‘m n=kzn7r B _;;_:‘_)

M0 (2. 104)

The series involving the terms = and Y( o T3Y be expressed as

M
5 (- t)- a dw — 5 LW éw}
p=1\ Ln ‘f(n z'n'é -JF,,, = lez TFw) (2.105)

where Fl and F2 are given by equation (2, 59) and (2. 60), respectively. The
contour 2 2 is the same as the contour 2 shown in Fig. 4, except that now

< d< (M+1)IL i is is i i £
%\I d<{ +)°‘ . Likewise 3 ;is given by Fig. 4 with l!]z_-ﬂf d

< (M+1) Eﬂ: . Integrating along the contours gives ( & is set equal to r)

M
S -1 )-.-.— ' —
n=n<an Tl 2{k—(2T)? 2 &= (T
M -2 € | 42 !
| i — e dow — ( ‘ E dw
1 : oV -
b 5 RT=w* 12 J 15" P
w=o0-26€ Wz o+2€
MT i€ MT+ze€
[ Fl . ' —Z
| vod 1 e
] w 4+ I dw
27T S’kz—wz" F J R - w* F, j (2.106)
wso-i€ W=c+76€
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Now a and c—> o but so does M such that M/a — > and M/c —=>© , Hence

we may write as a and c become large

MT /o MTT A
M
)2 (_\_ _ _'_) = | & doo—| S __ dw
n=i\ Mn m kz__wzi T k% w® (2. 107)
Ww=e Ww=o
Hence

SlL-d)is [alh(z%qg_.cln<z_ggr)J+s1.l;./n(-zk) (2_108/

)

Therefore, (2,104} becomes as a, ¢ —~ w«

. oo ( Mo
Lim Lla)=-7 « |-b |m<_?jﬁ)—f'h<\l_.m [_]h(M) -2 _!L.'—_j =
&)C -y Q0 m aris LN/I__,CD rieo ‘

OG-C=b -

= - Q.b - 17: '/l'“'\'
& SURTERNC]
(2,109

which is x (a ) for the O-R structure as can be seen by comparing (2. 109)

with (2, 82),

The fields for 0 < x <« b involves the Fourier inversion of Al«‘x (AN

given by equation (2, 37) for the O-R structure, and of C (x. a ) given by equa-
tion (2.43) for the C-R structure. For any @ within the strip and any 0< x<b

the limit as a, c-w»ac , wWhile a-c=b, of Cl(x, a)is A (x, 1) provided (2, 103)

1

is true. That is, K+(c1_,) includes the term X (L) which makes it algebraic

in the proper hali-plane. Hence the fields in 0 <€ x < b for the C-R structure

L o o W e g e e g e s o e T - s . .- R AR EEEEEE SR
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approach, in the limit, the actual fields of the O-R structure.

This estabiishes, for example, that the reflection coefficient for this
chosen C-R structure converges to the value of the reflection coefficient for
the O-R structure. Indeed, this is what Mittra and VanBlaricum [1965] re-
ported.

Likewise, the limit of Dl(x, a- ). given in (2.44), for b < x< a and
@ within the strip is equal to Bl(x, c.), given in (2. 38), Therefore, the
fields for b< x < a in the chosen 7.-R structure approach, in the limit, the
fields for the O-R structure for b < x (a goes to infinity on the limit). This
establishes that trne O-R solution is a limit point of the C-R solution 1n all
space. Therefore,O-R field quantities may be obtained from the correspond-
ing C-R field quantities by a limiting process as suggested by Talanov [1959]

and M1ﬂ,ra,et.a1.[1966].

e e— - . N - PR A — . 43, e - =
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3 EXCITATION OF A DIELECTRIC SLAB BY MEANS
O A TRUNCATED PARALLEL PLATE WAVEGUIDE

3.1 TE Excitation of a Surface Wave Structure

The excitation of a dielectric slab by means of a parallel plate wave-
guide with ore plate trunca‘ed 1s analyzed in tt1s section. 7T-<c surface wave
structure is shown in Fig. 7. Thke relative dielectric consrant of the slab (£ )
is assumed to be greater than one and rLence the pos:zibili'y of the siructure
supporting surface wav=s, The mncident field in the wavegu.de sec*ion s taken
to be the lowest order TE mode with the electric field intens_tv parallel ro the
walls of the guide. A slhight loss due to finite conducuvitics (o/l’ o] o' is as-
sumed 1n each region. However, when the final solution :s obtairad *his loss
is permitted to approach zero.

The TE polarization is described in detail 1n sections 2. 1.1 to 3, 1. 4
as opposed to the TEM excitation. The details of the formulation of the prob-
lem for the TEM excitation follow :losely those 1n section 2 and only the perti-

nent differenc=s and results are given ir sectiun 3,2,

J3.1.1 Fo.mulat:on of the Problem

Tte tctal el ctromagnetic fields are obtained bv sclving *te scalar

wave equations for *he scatrered scalar potential ¢ . Define

¢, = ¢i + ¢ (3. 1
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PERFECT CONDUCTORS
F’o' ‘o ’ 0’,

mer

Fig. 7 Surface wave structure excited by means of a parallel
plate waveguide.
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®, = Sm(ﬂf) e ; ccx sk VZ .
I/Z \
<z ;\, . 2 )z .
A kg~ (B), = "'((i’g,”kd/\) (3. 5
72. . V2. ,
k- K (0’/4063}‘?, el ) = K N (3. 41

2>
with k_ > 0, k4 > 0. Note that the parameters are chosen so that (2r /b)” >

3

2 2
Rekd > (r/b) . This ensures that the lowest order mode propagates in the

waveguide and that the dielectric sl. ™ is excited.

tial @ is given by the solution of

Cos
'
4~
%
P
I
-
)
y

/|
W
r
\
3

The scattered scalar poten-

i3 vl

The constant k is piven by equation (2.4). The electromaenetic fields are ob-

tained from

{5.9)
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| d Py

N, = o= (3. 9:

Defining Fourier transforms of (P by equations (2, 12) to (2. 16) re-

duces the problem to the solutior of

i
v !

YR 2 .- \
d2x® Y, $lxja)=c; osx=>e (3. 1Ci

d =
-

N
o

5 2
T v B =0 g b (3. 1)

L

where:
Vg

2 2
Y, = (a®—ky) 3, 12;

and Y is given by equation (2. 18). The asymptotic behavior of (b {x, zrre-

k ).‘-ff-'{'- and EE_(:&,CL;'

sults in @‘L(x. o ) Being analytic for 7'>-Min(k2, 4

being analytic for 7 < M‘m(kZ' k4)..
Reference to Fig. 7, equations (3. 7) to (3.9;, and equations (2. 121 to
(2. 16) gives as the boundary conditions on {’;(x, a)
a) Qi:,a)=
b) ijt'*-ro, &) = @_(b-a;a) = Qv 2)= 0

O

v fib+e) ) = Blb-ouw) = g b}
' I

4 1__(&1:)/&)_” @_(b—o)cl) = g S S —

¥4 Min = Minimum value of



- 3/ .
o) Pb, @)~ a as a—=a@ for 7< Minlh, k)

t =1/ "
@ (b))~ « * as a— o for T2 T Min Ue,_/_k»-#)
+

Boundary condition (e) reflects the fact that Ey§= ¢ and Ey~ z+ 1/2 at x = b,

z > =0, : ‘
|

A solution of (3.10) and (3, 11) in a for}rl suitable for the application

of the boundary conditions is

Dix,a)= A Sinh(yx) + C(a) Cosh (Y.x)} 0<xg b (3, 13)
-\ % Y X :
- e e 3 k==
Dix,a) = Bla) + Dl e (3. 14)

Recalling that Y has a positive real part for any a. for -k2< 7L k2 and the

fact that we are seeking decaying waves at infi.rﬁty requires that D(Q) be zero.
Also boundary condition (a) requires C(a.) to be zero. We may ncw write at

x = b, using boundary conditions (b) and (c),

Yb

) = A@) Sinh(Yb) = B@e (3. 15)
[ !
@ (b-o) @_(me) =A@ Y, Cosh(YL) (3, 16}
! 1 : "YL:
@__(Ip-ro) + §+(u+0) =—Bayyve (3. 17)

A solution for @(b) will yield “(a } and B(Q.) and hence a solvtion for

é(x. @.} and a formal solution for @(x. z).

Define

| aotie G770
qest Avallase
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D_"_ = @;(_b-i-o) - @i_(’_b—o) (3. 18

: -1/2
and therefore D, is analyticin 7> -Min(k,, k4) and behaves as . / a

2 S

k ). Subtracting equations (3. 16) and (3. 17), using

Q—>oo in 7 > -Min(kzx 4

the boundary condition (d), and the results in (3. 15) gives

(3. 19}

where:

L<&\= Sinh (an)
Y Sirh (Y b) +Y, Cosh(Yib) (3, 20)

The function L{ a; has branch points at k and -k, the branch points of
Yo, Choosmg the branch cuts for Y as was done 1n section 2, (2, 18:, and
shown in Fig, 2, results in L{C() again being analytic in —k2< 7T kz., This
function must be factored into a product L'+ L . The function L+ is analytic
in 7'>-k2 and L- is analytic in 7L k2° Again, this factorization s the diffi-
cult step. The factorization is obtained in section 3 . 1.3 by a limiting proce-
dure. The method is similar to the one used in section 2,3 and gives the fac-

torization in a form convenient for numerical work, Multiplying (3, 19) by

L, (a} and rearranging vields

Dl‘ L) — E_?_CL} - %?—) + L@ (3.21)

where:
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—— ()
E@)= j g :(Q_ g (3. 22)
s |(A)
_~ z
E(a) _‘%‘ b(CL:/B.) (3. 23)
i E?Z:}> L - L"(*/S'ﬂ (3. 24)

Obviously E (@.) is analytic for 7L -k4 and E+(<:L) is analytic for 7 >

—Min(kzy

Min(kz, k4). The left side of (3. 21) is analytic for 77> -Min(kz, k4) and the

right side is analytic for 7< Min(kz, k4). Therefore, one side is the analy-

k4). Therefore equation (3. 21) holds for -Min(kz. k4)< T L

tic continuation of the other and both sides of (3. 21) may be set equal to J(&),

which is analytic in the whole Q -plane.

-1/e .

In sectior 3. 1. 3 we will find that L+ and L behave as a@. in

’7'>-k2 and 7L k?.' respectively. Therefore, E (@) behaves as c.—l for

-1
< k4 and E+(a_) behaves as ¢« for 77> -Min(kz. k4). Using these re-

sults in 3. 21 shows that J(@ ) behaves as a.'l for 7> -Min(kZ, k4) and

also for 7« Min(kz, k4). The extended form of Liouville's theorem proves

that J(@ ) is zero. Hence, we obtain

s L8 1 LD) Siph (vix) (3. 25)
b (G."‘F\\, Sinh (Y\E)

A (x,@)= Ala) Sinh(Vi2) = - T




Y Yb~Y=x
B‘(x)a)=8(¢)e =—ﬁ_—' 4 L-.(-fg') L—(-CQ € (3. 26)
. b (a—g)
and the formal solution as
m+i7‘ -—Z. a7z
¢(x,z)=_’_—l'_-;ﬂ;' Alx,a) € daj o02x< b (3. 27)
— 0+ 7T
ao+fT _7:5.2_
b(x,z) =..%‘.q_r. f B (x,a) € da; b=x (3. 28)
-0+ 7

with —Min(kz, k4)<7‘< Min(kz. k4) in (3. 27) and (3. 28).

3.1.2 Choice of a Closed-Region Structure

The chosen C-R structure is shown in Fig. 8, The formulation of
this problem is identical to that of the O-R problem in section 3, 1.1 except
for one important change. The boundary condition which required decaying
waves at infinity now becomes

£) Qa, a@)=0
This results in the following equation, corresponding to (3. 14), as a solution
of the wave equation (3. 11),

Jtx,0) = B@) Sinh EY(a-x;_x + Dia) Cash [Y(a—z;‘} jbEXZ o L

Following the method of solution as outlined in section 3. 1.1 gives
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PERFECT CONDUCTORS

1€ 10, | Tc
. I S5 —

Fig. 8 Chosen closed-region structure corresponding to Fig. 7.
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\.l xa) = A@) Sm\'\ (Vx)= ‘/—_7? 2 K"(ﬁAK"(a) S{"L(Y' x) (3. 30)
b (a—8) Sinh (Y,b)

»

Q(x)¢)=B(Q)S'hLB(Q-z)‘_\=—‘,f_7? ; K@) K&) S\'hL[Y(G\—Xi_
* b (a78) Sih (ve) (3.31)

otz T saLz
= = .
qa(.x,z)-w Clxa) © daj os=x=b . 32)
~0+27
”{}"é"' _iaz
d(x,2) = _-2’—_""__1) Dga) < da ; bsxso. (3.33)

witl. -Min(kz. k4) LT Min(kz, k4) in (3. 32) and (3. 33). The function K+( a.)

-1/2

with a—»oo for 7 >

-1/2

is analytic for 77> -Min(kz, k4) and behaves as ¢
-Min(kz. k4). K () is analytic for 7~ < Min(kz, k4) and behaves as o

with =0 for 7 < Min(kz. k ). The product K+(CL) K_(c.) is equal to K(Q.)

4

in the strip.

K= Sinh (VL) Sinh(Yc)
Y Sinh(¥b) Cosh(ve) +Y, Cash (Yib) Sinh (Ye) (3. 34)

The function K(&) is a ratio of integral functions. It is actually meromorphic
with poles at ' Vg
/ 2
2, 2 Z . Z
Yy =% - = ( -
q, =% (k-4 ) tz(4-k) (3. 35)

with ln being the zeros of the characteristic equation (transverse “ave num-

bers of the waveguide) for the inhomogeneously filled waveguide.




Cos (Le) Sin Hab_) +Cos(j;l>) Mc_) (3. 36)
2, A '
where:
2 7
(= (erky =) .50

Note that the zeros approach (nm/a) as 1%« .
The functions K+(CL.) and K (@) are now readily obtained by using the

infinite product expansions of the integral functions.

V. 0 _C_}_B__ 2 "(n] _.X(G.)
Kl = 'Fz(l-_w,(w &\ ‘s‘-zm].[l'_‘r‘('+ ﬂn)e . &

= B - o -Z) (3.22)
where: Hl(‘+ ‘6:;1) < Qh-\
f= Sin (kgb) Sin(ke)
k Sin(k,b) Cos (ke) + kyCos (Ryb) Sin(ke) (3.39)
. . 2\
<ka () ) z((n&r) - kd) (3. 40)
!
qh=<k_éﬂri>h (3. 40. a)
4 = (K — \’l (3. 40. b)
. z b | | (3. 41)
X(a)=_z;r.[cln(%.) +Hh(%) + an.,('w T ﬂn)

-1/2
The X (a) given by (3.41) ensures that K+(CL) behaves as q. / as q—» o©

for 7> -M'm(kz. k4). It is obtained from a knowledge of the asymptotic form




e

of the infini*e products in (3. 38) by means of equation (2. 54.a). The func':un

K (@) ts equal ‘o K{(-d.). This function, K(Q ), and 1ts factoriza=ion will yieid

the factorization of L{Q.’, equation {?, 20}, via Iim:t in a form conven.ent for

numerical calculations.

3.1.3 Factorization for the Open-Structure

The factorization of Li@}, equation (3.20), will be done by a lim:ting
procedure analogous to the method discussed in section 2. 3. The only differ-
ence here 1s that L{ Q"' is more didficult {compare (3,201 with (2,30 1 and a
closed form for *the answer is not obtainable. However, the ‘orm of the fac-
torization obtained readilv .ends i1tself to numerical process.ng and hence nu
merical resul's for the electromagne‘;c ‘ield quant:‘:es of interes*.

The relationship be*ween the O-R s*ructure and the C-R s*ructure :s
seen hy comparing Fig. 7 ai! 8. The U R structure .s obtained by !«** ng a,
c —» 00 wh:le ma'nta:ning a c"b. Using this iim:t on Ki(@& ', equa‘ion (3. 34,

for any @ such *hat -k, <7<k, , gives

2 2
L_{m K(G_) = L_'.m S’h‘l lei:) S‘h"x(YC) -
arET® ¢+ | Y Sinh(v,b) Cesh(vc)+ Y, Cosh (vb) Sinh (ye)

_ Sinh (Y b) = L(a)
Y Sinh (Yb)+ Y, Cosh LY,b)

This results from the fact that for any @ with:n the s'rip Y has a posItiTe

non zero real part. Therefore




L_‘mq COS"\ (VC\ = l
C+® Sk (YC)

The function K(@. ) can be expressed in a convenient (for taking limits)

(3.43)

form by first expressing K+( a.) and K (@) in a form like the one used in sec-

tion 2. 3. In particular, we have

1
Y21 0o -%ﬁ%ﬁ H@)
K*(_q)=ﬁ‘[ll(|+__"-)e }-6
n=1 B (3. 44)

1
with H (@) defined by (2. 56), (2.57), and (2.58). Again X() is not included

i (3.44). In this case the functions Fl(u) and F_(w) are the characteristic

2

equations of the structure shown in Fig. 8, namely,

Fl(u) = Sin (wc) (3.45)
B (w)=w Cos(we) Sin(w b) + w,Cos (wp) Sinlwe) (3. 46)
with
2. , 2 \’/2‘
w,= (WS4, —Rr (3. 46. a)

The contour used in (2. 56) must enclose the proper zeros of equa-
tions (3.45) and (3. 46), that is, half the total number as the zeros occur in
pairs iwn. Equation (3. 46) now has ihe possibility of zeros that give rise to
surface waves and again zeros whose spacing approaches a continuum as a, c,
appreach infinity. This is clearly demonstrated by considering the zeros of
(3.46) when the loss c’l and o’z are reduced to zero. Under this condition
there are two possibilities, real roots and imaginary roots. The imaginary

roots will exist if g is greater than one, which is the case being considered
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here. The possibility of K less than one is discussed in section 3. 3.
The real zeros of equation (3. 46) approach +nm /a for large, real, w
and also the spacing between the zeros becomes infinite-imally small as a
approaches infinity. For imaginary roots letw = i p (p a real number) and
equation (3. 46) becomes
Fz(z.f) =2 [F- Cash ('A,C)S_l'h(?,b) -+ %, Cas (/a;b).S'm/; (/bc] (3.47)
with ?| = ((Kﬂ)bi- _/6'1 )"z » Equation (3.47) can be shown only to have
zeros for 0 & |pl< mko. The number of zeros is discrete and there
may actually be none. How many real zeros equation (3.47) may, have is de-
termined by the parameters b, & , ko. When c approaches infinity ard p is
positive (3.47) reduces to
o Sin (/y,b) + 4oy Cos (fb) (3. 48)
which is the characteristic equation for determining the surface roots of a di-
electric slab backed by a perfect conductor with a TE-polarization. (See
Collin [1960], p. 474). Therefore, the imaginary roots of (3. 46) which are in
the upper half of the w-plane go into the surface wave roots and the positive
real roots go into the continuous eigenvalue spectrum as a and ¢ approach in-
finity for the open structure shown in Fig. 7. MNz*c tnat equation (3. 4b) is
slightly different from equation (3. 36). However, they have the same zeros
because 1 = 0 or lI = 0 are not ructs of (3.36). A zeroat ] = 0 1s present
only when the parameters b, & , ko are such that the transition point of a

new surtace wave occurs. We will pick the parameters such that the transi-




tion point is not obtained. When the loss o’l and (3’z are reinser*~rd the zeros
will become slightly complex. The previous real roots will now contain a
¢mall imaginary component and the imaginary roots will contain a small real
component.

The contour used in (3. 44) is the one shown in Fig. 4 with the addition
of contours to pick up the surface wave roots in the upper half-plane, if any.
The zeros (nw/a) are now replaced by the “ the zeros of (3.46). The radius
r, in Fig. 4, must now be 0 < r<Re(.~O), Im('wo)<é< kZ' where - is the
smallest root of equation (3. 46) belonging to the set which goes into a contin-
uous spectrum as a and ¢ approach infinity.

That K+(Q) given by (3. 44) is the same as (3. 38) can be verified by
using the calculus of residues. The only singularities within the contour are

1 3

the zeros of Fl(u) and F (). F (<) and F. (.) do not have any poles within
- <.

1
z .

1
The contour integral for i{ (@} «en now be written along each path

and gives for the surface waves

M -~ Vv g 3 -

\ e N i I NS \ ;
- 2 v / "y \ - P V.
n-\Z.r_U: J \ h-o-;pi’/ '}‘iﬂ?""}’q" : (3, 49)

where p 1s a zere of (3. 47) und M 1s the number of zerus.  The ‘ntegrals
3 v

aleng the other paths give the samoe res *"ts as v section 4,3 The ~fo.v¢,
. -1 .
Iy - Q : 5.
. - — - ~ —_ = = el
Y, ' g -~
: R*+
A e el I o] f’"
K\d\)"fo. i "—-‘;——- —— AT |+ p—1— | ‘e (s Si\)
.. : .99
I e - 7= R 5




1
with H (@ ) given by (2.65). The function K (&) = K (-&}. Hence,

-1

AR - ab . N Hi(d-)
t\<a>=ﬁ-[glu+§-n) r—] [ﬂ(lw—,._.1 1h‘+m]‘ e,

h=ji

-1 .
< \
U oo ab’l e HE
20— 2| T (- a) K 4 e
L
Taking the limit of (3, 51, and using (2.42}, (3. 39) vields

[ é?%r_] %F(l-—‘-‘-)e‘%ﬂ
L K = Lea) = Suthat) L0 5 gl

Q,C—rm -ikslh(hdb> 'f'kd C““’-d")
a~c=b

- -

= | < H) + )
3 M 2
(4 Vkﬂ-f’ —}-TT(\-——-E’——) h-i-ﬂ,:g.e
n. ‘V =) n=i 'rk7‘+'>:“ t3, 52,

where p_1is now a surface wave root {positive roo!! of (3,48) , M *the num-
n

ber of roots, and

1
H(a) = l_)LW_l.m () (3. 53)
a-ceb

1
with H {Q) given by (2. 68},

Define ( € > 0}

(3. 51
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5 g—ze) F(5-i€)

b Gs-ie =Lin 8 <1 L, 3 ' 1 -
:.'f::ob 2me 2 :L '; L g-t¢) R (g—ze)J
-~ +25 & ,
_(Su'n(w.\))‘f‘ “b[& Seslob) Z’S"(UQ iy Lol % (3. 54)
1\ 27 C_w Su’n(Mb)“‘iw.Cost.b)] .
and Jw ___*g..;e
. q(3+i€)
’bf+62(§+zc) - o.bévrvco 'T:‘z' =
- S; (w b Tw-"’{!& CLS\’ ) !b) - Z.SIH w|bﬂ+j% COS(UI b)
2w E@;Sm(w!b\; -t-zw‘Cos(w,b)] | (3. 55j
.o J w=F+2€
o ~1€ o426
H(cx\———-fwe(m W dw +S-F<a,w)G(w) duw -5\‘ qu) Gylw) de
Wze-1€ Q=246 (3. 59)

with Im © < €< k,. In this form the terms due to G1 and GZ can be consider-
ed the perturbation, due to K varying from 1. The equatioas (3. 52) and

"6) give L(a@.) in a suitable form for obtaining L_+(CL) and L (a).

'Tie choice for L+(G-) may be made as

S — S, T SN -y o S “ ¢

L - . Lt Seliniits 3 Gttt



V2 _?%%
(@) = Sin(kyb) [ TO+3)E |
+ | TSl + 5, G (Rl | L P

N - k‘i ] H@) — X(<)
L "
. H(lﬂ-m)e | - € (3.57)

L (a)=1L (-a) (3. 58)

k ). This results from the

The function .L+(Cl) is analytic for 7 > -Min(kz, 4

fact that ﬁn, equation (2,40), has a posilive imaginary part greater tnan k4
and therefore the infinite product is analytic for 77 > -k4. The function H{Q ),
equation (3., 56), is analytic for 7‘>-kZ as f(a, w) and Gl(w) and Gz(w) satisfy
the conditions of theorem A, page 11, Noble [1958] and restated in the Appen-
dix.

The sclution of the Wiener-Hopf type equation, (3.21), requires that

L+(CL) and hence L (r1, ) have algebraic behavior for large & . Therefore,
<)

the term e ( must be incluued in (3. 57) (o énsure this behavior. The
asymptotic form of (3. 57) will dictate the choice of X (&).

The infinite product behaves asz

b
::E::r e, 9,,;?[ +'"<‘%‘°—>‘ﬂ+"z-

~ & e (3.59)

¢

—||+/5n)

e g T e ——— - = . . B . N - L mraim AU o o o - .
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for 77> -Min(k,s k,). The finite product behaves as

2" T4
a s =
M "71—!’ M T n= ”az‘l' z
Ti+=—=m)e™'fM ~ a e Fr
nzi k 4+ P: (3. 60)
Also
)
~2 (P, dw ~ 3 gb — i gbln(2a)
w=0 : ' R (3.01)
which is obtained from the work in section 2. 3.
This leaves the term
w-te ot+ie
[ Faw G dw = [ £law Gl do
w=9g=2€& W0 +1€ (3.62)

Consider it in two parts by referring to the definition of f(@, w) given by (2. 57).

One term is

o-2& . , @+ L€
a2 2 o\ d
Lo=-a) [ (-)” 60 do -] (K- Gyl do
w=o-2€ wzot i€ (3. 63)

which behaves as (@) . (constant). These integrals converge because Gl(w)

and Gz(w) go to zero for large w on the contours indicated in (3. 63). The re-

maining terms of (3. 62) are

0-2€ a:+?..€
: a
I‘(¢)=fln(| +1£_@) GW)dw - flh(l +ﬁ§)ﬁ> G,(w) dw (3. 64)
wso—-%€ o Wae+i€ :
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Changing the variable in the second integral of (3. 64) to -w and using the def-

initions of Gl(w) and Gz(w) given by equations (3, 54) and (3. 55), respectively,

gives for Il(d.)

o-2€
a
I@)= f |n(| +1r—r-—\‘\:;t> G; (w) dw (3. 65)
-o0-1€

The path of integration may be closed in the lower half plane since Gl(w) goes
to zero on the infinite semicircle. The integrand of (3. 65), however, may
have poles atw = i p where p is the surface wave pole at equation (3. 48), and

also the branch of Nk + « is in the lower half plane. Therefore,

M a <
) G () d
1@ ,?;.‘"<'+'?k"+r’a) +fs \h<‘+ "1‘“’1) I (3. 66)

The branch line integral of (3. 66) is equal to

-t®
3 - ______._i A ~ (o s'te 't
_E E"(' M {Z}?F> ~Ir <| To :_1..;.1' 'ﬂ Gylu) €10~ ConsEan (3. 67)

as a-»o . Therefore

T(a) ~ In(a™) (3. 68)

for 7 > -Min(k, k ). Combining these results gives

4
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77 M
N - kb\|4 ab o+ Tt <
L“(_a) a E_xP l_gr_b [r' ""h ('Z’TT>]+ c!—‘2_- + Ita) +nZ=| e+ P;- (3. 69)
Hence, the choice of X (@) as
- va b kb b +c12
X@=Exp]tab [l" + ln(ﬁﬂ 2t + 1@ -r—_sz_\_ = 3. 70)

will result in L+(CI.) remaining analytic for 77 > -Min(kz, k4) but now behav-
ing algebraically, namely, CL_I/Z, as &-»00 in this region. The function
L_(a) is given by L+(-0.) and hence L_(Cz) behaves as CCI/Z as @.>2" for
< Min(kz; k4)- The product L+(Q'.) L (@) is still IL(a ) in the strip because
of the fact that X (-@) = - X (@) (refer to the definition of X (@) given by
equation (3, 70) ).
Reducing losses, o’l and dz, to zero once L+(a_) is obtained, yields

a simplification in the equations. Setting 61 and Q’Z to zero results in k = ko,

= J/E‘ko. Also €0 in equations (3.56) and (3. 63). Now G,() = 'Gl*(“’)
with w real (refer to equations (3. 54) and (3. 55) defining Gl(w) and Gz(w), re-

spectively) and the loss reduced to zero. Therefore, we obtain for (3. 56) and

(3. 63), under the condition that the loss is zero,

H(a) = j%(a,w)( + G(w)> dw (3. 71)
2,

~p
I(a)y==- " J (K*=?) G dw (3. 72)
2,
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where:
r'wz_
. Fb=Cosrb) Sinlw,b) |._ -«
Gw) =2 Re G(w) —-,,5-; r [wz Sin (W b) + w2 Cos (w.b)] (3. 73)
2\2
= (w’-+ (k-1) ks ) (3. 73. a)

and 21 is the contour shown in Fig. 6. Convergence of the integral in the de-
finition of I(a@), (3. 72), is ensured as G(w), (3. 73), goes to zero as w—» co .
A form of L+( @) that is extremely convenient for numerical work

when the loss is reduced to zero is given by

ap V2 y
e r - —-q? T 2
L@ =L | @) = Tr(ﬁ ra)e | [sinh(Xb
T L(a) © &b Y‘
E ( o= a)e ThT
x e
2 m oTa H (<) = X()
i Y, | T @Em e ™ |
o ' —| = —a e
where: _

H (a) = Y [ﬂmw) f-a u)](-—* +G<wﬂ
Zn (3.75)
with X (@) defined by equa‘*ion (3. 70) with k = ko, I{Q) by equation (3. 72),
G(w) by equation (3. 73), ﬁn by equation (3. 40), Yl by equation (3. 12), P, the
real positive zeros of (3.48), and by setting kd = \/—I? k , k=k wherever

o o)

they occur.




3.1.4 Solution of the Froblem:

The evaluation of the field quantities of interest is obtained by the
Fourier inversion integrals given in (3, 27) and (3. 28). The function L+(c1)
is given by (3, 74) and L_(CI.) = L+(—CL). Within the waveguide section of the
structure, z >0 and 0 € x <b, the modes are obtained from equation (3. 27).
The contour may be closed in the lower half plane enclosing only pole-type
singularities. The calculus of residues gives the modes directly, in particu-
lar, the lowest order reflected mode (only reflected mode carrying average

real power) is

2.
3 L) LB Sin(@z) &
Eﬂ zbf ( ) (3. 76)

Hence, the reflection coefficient is

(P.)

R=" 253/8 A (3.77)

The far field is again obtained bv the use of the Huygen equivalent source in

the aperture x = b + 0 in a manner analogous to that descrited in sectirn 2, 4.

67

The only difference is now we have an equivalent magnetic current in the aper-

ture. The results are

z'hf.q- ! I - koLSm

v 4 L.
TR, £ . [__LB,) | Sinte) L&K,Los 6)
b koco.s 6-!-/3|

(3.78;
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with f =‘{x2 + zz, 0 €9« w, and ko = wW-

In the results given in (3. 77) and (3. 78) the loss has been made negli-
gible, in fact, zero. The loss set at zero results in k = ko and kd = 'Jk_‘ko aad
hence equation (3. 78), The loss will also be set at zero in the results that
follow,

The average real power reflected in the waveguide and the average
real power radiated in the space wave are¢
Normalized Reflected Power = W _ = |R] 2 (3.79)

Normalized Radiated Power = wrad =

z
SnlB)e L—g"'c“ e) de
kCs@) 4 (3. 80)

The normalization consists in the incident power being set to one, Recall that
the parameters are chosen so that only the lowest order mode propagates in
the waveguide. Therefore, the higher order reflected modes carry zero aver-
age real power.
The structure of Fig. 7 has the possibility of the existence of surface
waves. The surface wave mcdes for b € x are obtained from
o417

. L@ . Yp-Yx—iaz J
F(z.z2) = & J Sinh(¢ = - b<x, Zz<o
y ! 2b (¢~F,) L. -rh(vib) +Y Ccsk(v,bﬂ sz)’ g

-0+t ”

(3. 81)

Use of L (@) = L( a,)/L+( Q) is made in (3.81). The surface waves are given
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by qn, the positive zeros of

Y Sinh (Yb) +Y, Cosh (vib) (3. 81, a)

with O‘.n real and ko < 4 n< NK ko. The possibility of surface waves exists
bacause K > 1 is being considered here. The residues of the integrand of

(3.81) at the surface wave poles give the surface wave modes as

M -RX—-%ta,zZ
- m L) ce’ "
Byt LP) 2 Resn - e ) BSX, 220 (5,82
where:
hb z
Resn = eF l";aF" S;"“‘"L) ,
Llan) (@, ) [@nhn S th bl =2y PaCos(hyb) Sin(h 1) + by p, b
(3.83)

p (0 <p < Nk -1k ) is a positive root of (3.48) with the luss set to zero.
n n 0

M = number o. surface waves (number cf positive real zeros of (3.48))

2 |
@=Tk “+p (3. 84)

(3. 85)
The surface wave modes for 0 < x < b are obtained from
o+t T .
-1a2
E :__il—g') r _ Sink (Yx ‘L?LL Jd.;agxsb)z<o
Yy~ zb _J L@@p) Y Sinhive) + V.Cush o) | 3. 86)

The residue of the integrand of (3. 86) at the surface wave poles again yives

for the surface wave modes.
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-pb-ia,z

¥ Re =
Eg =T Lf’,,?_:_‘ > Sin(h,b)

The surface wave modes are orthogonal in the following sense;

e Sin ('wnx)

—e
~
—
[
(o]
-
S’

o0
P _m 7
J E E J—‘c=0°, Nf m (3. 88)
7
°
Hence, the total real average power carried by the surface wave modes is the
sum of the power in each mode. This gives the normalized real average power

carried in the surface waves as

.  Seplresal e
W = 27> L) Z)a, [Resn| € .
Sw /d, b , f | ne) S?nz(hhb)
2
an(hnb) __b_ - Sm(zk,,l:)
Iz Tz T 4k,

) (3. 89)
An inspection of the results given in this section shows that once
L (d) 18 known ( ¥ real), the radiation pattern of the space wave, the power
reflected in the waveguide, the power carried in tne surface waves, and the
power carried in the space wave can be determined. These numerical calcu-
-ations are discussed and the results Fresented in section 4.
The radiation of a truncated parallel plate waveguide in free space,
Fig. 1, with an E in ident may be obtained f ‘om the results of section 3. | by
7

setting the relative ielectric constant to ore. This value of ‘he dielectric




constant removes any surface wave phenomenon and hence any equations for

surface wave quantities are set to zero.

3.2 TEM Excitation of a Surface Wave Structure

In this section we will obtain the excitation of the surface wave struc-

iure, shown in Fig. 7, for a TEM mode incident in the waveguide.
dent field is

The inci-

with k = given by equation (3.4). The formulation of the problem follows ex-

actly the one given in section 2 except that now th: presence of the dielectric
must be taken into account.

The results of the analysis are

Hy = & (3.90)
£ =1 1% (3.91)
= Y Az
1 3d:
E_zz:——i-(—- 3% (3.92)
~1k,Z
¢, = & + 43) c<x<b,Vz (3.93)
.= & e<x,vZ (3.93 a)
where:
Y=VY,=twke —q, 3 o0<x<b (3. 94

(3. 24, a)

~1



and

o+2T .

r Y= %74 )
¢tfx,2)=::1:-}:5 ; Rix,a) € da. y °£Xsb

P _w.‘-i?" (3- 95)

o+iT

r -taz J ‘D )
' el | Blxae . <x (3.96
@(Z Z) .j' ) 1« § ?

’ Jz'qr'»‘éo-,*ér

Ak = L4 Lik) L@ Cosh (vix)
12777 Y; Siab (b)) (a—ky)

. Yb
1Lk L) & L

1z v (a-ky)

2.97M

B 1) = —

with £, = Yz/Yl and Y, defined by equation (3. 12} and Y by (2.18).

The function L(@.) tor this polarizatior of the incident field is

@ = — Y Y Stnh(¥b)
Yi Sinh (k) +Y K, Cosh (vb) (3.99)

This (unction is factored by the rmethod of section 3. 1.3 by using the related

closed-region functicn

VY, Sinh (7¢) Sinh (¥b) ‘
N Sinh (b)Y Cesh (Ye) +‘K.YC:JSL (b) Sinh (Ye)

K = (3. 100)

with the result

\/2_
L() = (a+k) " (atky) M (@) (3.101)

72
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—db -~
NE- “in| Hi@ = X()
- L]+ [F 0+ $)e™ . o
K Sl ~ ik, k Cos 'k &\,)].[;a,:

s
() & T
"i*-ik'+p:})e N +E?J (3.102)

L@ = (a-k){a-ky) Ma) (3.10% a)
and k is defii.~4 by equation (2. 4) and ﬁn by (3.40). The numbers p, are the
surface wave zeros given by the zeros of the characteristic equation.

K o Coslbp) = p Sin(bp) (3.103)
P = (k:-hz—ff‘)‘/z’ (3. 104)

The funciion H{ @) is still given by (3.56), X (a) by (3. 70), and I(a.) by
(3. 63), but now the functions Gl(w) and G_(w) become for this problem
w ./ . . 77—
—2k, Cas(w,b) + o Sin(ahb) +awh [COS(MB) +K o th(ﬁub):l

Gw) = b - : - B9
e AT [—dwk, Costub) + o Sin(wk) ]

re 2\ "2
w = (W +ky =k ) (3. 106)
G, (w) = — Gtw) (3.107)

This results in ’_.+(a, being analytic and beaaving as cLl/Z as d.+x for

7’>-Min(k2, k4). Likewise L. (a) is analytic and behaves as a‘_l‘/z as

axofor 7 < Min(k?. k4).

The form of 14561) that is convenient for numerical cajcula.ions when

the loss S, and T, are reduced to zero is given by
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b Vg
L= (<1+k) (a+K R []’L p,,+a.)e . SinhtYb)
LEl(.Pn G e nqr YI
T"""‘ - ,

’T——‘ [R /2 _ (¢
I'ﬁ:.dho‘*’f’:l‘ a)e ko + P | eHo(q') ¥
e = = ¢ —— ‘ (3. 108)

I 2 +a) € TEs = Y, Sirh ) +RY Cosh (b)|

! b
H.(“)= z f [f(a.,w\ —f(—a)w)j -7 —\—G—(w)] dw (3. 109)
2
with 21 the contour shown in Fig. 6 and G{w) given by

Wt
K St ﬂ((AM:) Cos(w, b) = - w} zL
W[/C"w" Cos(w,b)+w Sm(w,b)]

Glw) = 7,‘,2:— (3. 110)

2\ /2
w, = (wz'-i- (k=1 ko ) (3. 711)

The )( (a) is given by (3. 70) with kd = WA ko, k = ko replaced throughout.

The () used in X (&) now becomes

.-l/

I(a) ——d-f (kz L wt) Gw)dw 3. 112)

with G(w) given in (3. 110). This mtegral converges as G(w) behaves as Sin(w)

= «/’/?.‘ko,

for large w. The pn become the positive real zeros of (3. 103) with kd

= -
k kop kl s -

The results of interest for this problem are obtained as was done in
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section 3. 1.4 and are merely stated here. The normalized (incident energy

set at one) reflected power

L.ue k,)

‘Ha’l:

_5_3_

Wres =

(3.113)

Thi- follows since the parameters are restricted to values such that only the
1/2

lowest order mode can propagate in the waveguide. That is, & / ko < /b,

The normalized power radiated in the space wave is

2
do

W =
rad (3.114)

| e

with the radiation pattern given by (0 < 8<r)

Q

|k, Cos @)
ko Cos 6+ K2 ks (3. 115)

The normalized energy in the surface waves becomes

[yl =

&b K.Sm(lh L).g—t\ S‘n(hhl:)
" ‘%5 "= 4 nn z‘: (3.116)

where M is the number of surface waves and

zh”

Dresn = - P (3.117)

- K‘/zk) L(Qn .

- w—- R T TR — - R . NPT e e e r—— T LT T g e S g
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D= aup, Silhab) +ba, P, hn CosCh b +tghyk Cslhbl +hayf ke Sin(hib) 118)

V2.

o, = ( k:‘.,_F:) (3.119)
h, = ((n—l)k:'-ﬁf) * 20 (3. 120)

These numerical calculations are discussed and the results presented in sec-

tion 4 along with those for the TE-polarization.

3.3 Excitation of an Incompressible, Isotropic, Plasma Slab

The structure in question 1s stil) given by Fig. 7 but with one change.
The dielectric between 0 £ x < b is replaced by an incompressible, isotropic,
plasma medium. This plasma medium behaves as a dielectric with a relative
dielectric constant less than 1. This results from the fact that the relative

electric constant for this medium is

K =13 (3.121)
2
X = —f: (3. 122)

with 2% the plasma frequency and w the wave freguency, for example Budden
[1964).

Values of the relative dizlectric constant less than zero are not of any
interest as it is impossible to have propagating waves in the waveguide, How-
ever, there are propagating modes for tke relative dielectric constant between
zero and one. It can be shown, for this rarge of £ , that the structure will

not support surface waves.

Y L - U Y G A < > —————
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The analysis of this problem mu.y be extracted from sections 3.1 and
3. 2 by considering the effect of 0 < K < 1 on the analysis. It is found that the
only change occurs in G(w), given by (3. 73) for the TE case and by (3. 110) for

the TEM case. Recall that Wy in these equations is

w, = ((/c-l)k02+w2)l/2 (3.123)
with w varying from zero to infinity. The quantity (K -X) ko is now negative,
Hence, for values of w < N (1-K ko. @, becomes imaginary. The choice: ol the
sign of the imaginary number is immaterial as G(w) is not a multivalued func-
tion of w. Therefore, the results of sections 3.1 and 3. 2 stand unaltered for
the case of 0 £<1. However, all surface wave rhenomeaa is non-existent for

this range of £ and the equations in those sections must be int<rpreted accord-

ingly.

3.4 Discussion of the Method for the D electric Slab Structur=

Basically the related C-R structure was used only to obtain the O-R
factorization. However, the O-R and C-R solutions may be related as was
done in section 2.5 in the following vvay. To be specific, we will discuss the

TE case.

The function L+( a) given by (3. 57) is the limit, a, c=+o while a-c=b,

of K (@) given by (3.38) if we include the X (@), (3.41), in K _(Q) {recall ‘nat J{4)

makes K+(d,) behave algebraically). This is true if the limit of (3.41) is (3, 70).

We may write (3.41) as
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o V2 T\
x0a) = Q@) +a hzﬂ[(u&-!,f’ ) = (- &) ) -
Convergence of the series is ensured because 1n = mr/a + Ol‘l/n) for large n.
The function Q(a ) is equal to k (@) in section 2.5 and is given by (2. 104).
Recall that the ln are the roots oi equation (3.36). Taking the limit of I (&)

given by (3. 124) yields

“
. . i
Lim Y(a)=27ab 474 ]n(‘.sé.)+ E‘-.Zb +1(a) + C‘?;;T!—-ik TR (3.125)

o.,C —» oo '7r am AR
a-c=b

with I( @) given by (3. 63), The limit of Q(@ ) had already been obtained in sec-
tion 2. 3; refer to equation (2. 109). Now equatior (3. 125) {s X (7.), (3.79) for
the O-R prcblem. Therefore, the limit of K+(G-) is L+(d.). Hen:e, one may
now show that the limit of Cl(x, a. ) and Dl(x, d.), given by equations (3. 30)
and (3. 31), respectively, for the C-R structure, become Al(x, Q&) and Bl(x, a.),
given by equations (3. 25) and (3. 26), respectively, for the O-R structure.
Therefore, the complete C-R scluticu bzcomes. in the limit, thec O-R solution.
This means that instead of formulating the O-R problem one <ould obtain the
solution by formulating a related C-R problem and taking the limit ot its solu-
tioa as dictated by the physics. This prhenomena is wnat Talanov {1359+ sug-
gested would happen. In fact, he solved the C-R problem for a TEM exci-
tation and calculated the energy in the slow waves of the inhomogeneously

filled gu'de and claimed that their value as a = 2© s the energy in the sur-




face waves.

In section 2 we obtained the factoriz: tion for the C-R problem in a
particular form. The advantage of doing this should now be obvious. As a
and ¢ become lar-e, the series which . ccurred could be zecast as integrals
providing the spacing between adjacent zeros of the characteristic equations,
Fl(w) and Fz(w), was known., This representation yielded the information as
the function obtained, -b + G(w), by taking the limit of the integral representa-
tion, is the desired mfoﬂrmation. In parilicular, -b + G(w), should be the differ-

™

ence of the invarse of the spacing of the zeros of the characteristic equations,

That this is so is verified in section 4 witn numerical calculations.
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4. NUMERICAL RESULTS

The usual field quantities of interest ir problems of this tvpe are ob-
tainable once L+(d) is known (drc.al). That is, the average power radiated
in the space wave, reflected in the waveguide, and trapped in the surface
waves (if any) and the radiation pattern of the space wave are given as func -
tions of iL+(d)i . This can be seen by referring to equations (3. 79), (3. 30},
(3. 89), and (3. 78) for the TE polarization and (3, 113), (3. 114), (3.11¢€), and
(3. 115) for the TEM excitation.

The function |L+(o')| is given in ccnvenient form for numerical pro-
cessing by (3. 74) and (3. 108) for the TE and TEM polarizations respectiveuy.
To indicate what is involved in the 2valuation of 'L+(d)i , a close lcok at the
TE case is made., The evaluation of |L+(d)| for the TEM polarization will be

similar, Taking the absolute value of (3. 74) for real arguments gives

o \ BN Va
oz 2
|Li@)] = [T Sish (4B T (erpl = )|
+
'ﬁ|<,3,,—6) K | ﬁ'(‘ih:‘+'9,{'+6 )l
2 Re H.C‘T)":zb — Re T()
° Yi . e
Y Sinh LY +Y, Corh (Y1) (4. 1

The real part of Hl(d) 18 given by
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Re

Hm k- J'“‘} <_};_+G'(w)> dw +5b + Re Ite)
?:.)::ol\ ‘gh -wa—-o" T

This result s obtained cince the square root term is purely imaginary lor

1. 2)

w>k . The definition of Bn, (3.40), and the fact that we are considering the
(o

case where only one mode propagates in the waveguide (—E <{E‘ ko< ?_.&_T) ’

gives

‘er(F,,+o’) _ '_,5’,4—6
n-;(/ﬁn 5) /‘"_6" (4. 3)

Therefore, equation {4. 1) becomes

‘/2.
" v
2l
L] =|(Brs) sinb{ab) ""—r‘be o ‘
ot g )
| H,(S)
] l Y, | e’ .1
YS\"“\ (YE)'f'Y‘baS‘H Yb l

with HZ(G) given by
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(4. 5)

Hz(d _%X ln kZ-? +q .<__E_>.+(,(m dw
Lol ke -6 n

and G(w) given by (3. 73). The convenience of L+(c.) as given in (4. 4) is 10w
obvious., We are left with only a finite integral to evaluate.
“hen Idl is less than ko. the integrand of equation (4. 5) becomes sin-
2 1/2 . '
gular atow = W,z (ko -0 ) . This results from the fact that we have reduced

the loss tuv zero. However, this is an integrable singularity, as one expects,

and may be handled in the following way. Rewriting equation (4. 5) for 0€8< ko

gives ko _]
H(d):.‘-f |n| omw +C .<—E+6'(w))- In|2s® \. -b +G(uo\>ir&"
z z kc o -< T W, (w.—ed) |/ ™

w=o

-

+-£—;<-— + Glwo) .( w: o) ) dw

—

(4. 6)
The first integral in equation (4. 6) is no longer singular at @ and is conven-
iently handled by a digital computer. The second integral in (4. 6) can be ob-
tained in closed form. For negative values of & we have, Hz(d) = -Hzﬂé'. ).
Therefore, Hz(d) is obtained from (4. 6} for all & and hence l L+(d)‘ 1S conven-
tently calculated. The characteristic response of the structures for both TE
and TEM excitations will be givin in graphical form in what follows.

In going from a series to an integral, which occurs whern obtaining
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L+(Q_) and L_(CL) by letting a and ¢ approach infinity in the representation of
K(@), we nceded knowledge of the spacing of the zeros of the characteristic e-
quaticas, We concluded that the function b/r - G() is the difference of the in-
verse of the spacing of the zeros o the characteristic equations F, (<) and
", lw)as a, c~»o0 . I'or exampls, the characteristic equations are given by
(3.45) and (3, 46) and G(w) by (3. 73} for the TE polarization. This conclusion
rrav ke verified by actually finding the zeros of Fl(u) and Fz(u) and seeing if
indeed the zeros behave, 2¢ a and ¢ approach infinity, in a manner given by the
function & - G(v). The result ox this is shown in Fig, 9 for the TE excitation.
Onz can Zee that, for /b equal to 80, the curve obtained from a knowledge of
the zercs is identical to the theoretical curve given by b/n-G(.). For ¢/b= 8
there is some difference, as expected. That is, only in the limit as a—% 00
does G(w) hold.

The response of the structure to a TE polarized source is shown in
Figs. 10 to 15, The relative dielectric constant (JC) has three distiuct ranges:
a) the plasma phenomena with 0 < K <« 1.0; b) free space radiation with
R = 1.0; ¢) the surface wave phenomena with K > 1,0. The response of
the structure fcr -"alues of K in each of th:se ranges s given in Figs., 10, ii,
12, and 13. Recall that these are normalized values with the incidert energy
set at 1 or 100 per cent and the maximum far field value set at one.

An nspection of Figs. 10 and 11 shows that it is possible to have all

the incident power radiated in the space wave. This is also true for the sur-
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Fig. 10 Power distribution and far field patterns for an isotropic, incom-
pressible, TE excited, plasma slab.
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Fig. 11  Power distribution and far field patterns for a TE excited, par-
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13 Power distribution for a TE excited surface wave structure.
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face wave structure, shown in Fig, 12, until the structure starts to suppor-
surface waves., Once surtace waves can be supported, a transfer of power
from the space wave tc the surface wave occurs. Tre structure wall support
surface waves only when NE-T kob >n /2. The incidunt power may all be
transferred to the surface waves by a su:itable choice of parameters as s<en
in Fig. 13. There are no far field patterns plotted in Frg. 13 as the power ra-
diated in this case is negligible compared to the power carried in the surface
waves. Fig. !3 also shows the effect of two surface wiaves existing on the
structure. Thi~ is the maximum rumber that the structure can support since
we assumed that the parameters are such that only the low~st order mode can
propagate in the waveguide. The effect of holding kob congvant and varving K
is shown in Figs. 14 and 15,

The r .ponse of the structure to 2 TEM polarized source 1s g:vea 1n
¥Figs. 16 to 19. The truciure is again quite efficiert as the reflected power
may be imade negligible witk all the incident power r-diated in the space wave
(refer to Figs. '.16 and 17). When K is grea*ter than one the structure uppcrts
a surface wave and aga2wn the power is *ransferred from the space wave to the
surface wave as geenn Fig. 18, Only one surface wave is supported wit® the
values of parameters that permit only the lowest order mode to propagate 1in
the waveguide, The effect of varying K :s shown in Fig. 19.

A check on the algebra and computer results .s possible bv using the

conservation of energy principle. TIbe sum. of the power radiated in *he gpace
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wave, the power reflected in the waveguide, and the power carried by the sur-
face waves (if any) must equal the incid-nt power. This equality was obtained
to within 0. 5 per cent. This also gave a check on the far field patterns as the
radiated power is equal to a constant times the integral of the square of the
far field function. A verification of the numerical work for the radiated power
is then an indirect verification of the far field pattern.

A comparison of the numerical results for the TEM excitation of the
surface wave structure, given in“i:‘ig. 18, with those published by Angulo and
Chang [1959] shows that they are not in agreement. The results given here
should compare with their results with '"h" set to zero. Their results show
that the reflected power has a maximum at kob approximately 1. 25 with a
corresponding minimum in the power radiated. Our results do not display
these phenomena. Another paper by Angulo and Chang [1958] gives the results
for a cylindric .l geometry. The results published there have the functional
f. sm of our results given in Fig., 18. OCne would not expect the change in the
geometry f~>m cylindrical to rectangular to cause the change in response as

found in their two papers.
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5. CONCLUSION

The solutions of three Wiener-Hopf type boundary value problems
have been given in thkis work. The problem oi a parallel plate waveguide with
one plate truacated and radiating irn free space was solved in section 2. A ver-
ification of the factorization was cbtained by reference to the solution of a sermu.
infinite parallel plate waveguide radiating in free space given in Noble [1958),
The function to be factored is the same for both problems.

The excitation of a dielectric slab (surface wave structure) and the ~x-
citation of an incompressible, isotropic, plasma slab by means of a truncated
parallel plate waveguide were given in section 3. Both TE and TEM polariza-
tions of the exciting field were considered. The results for the TEM excitation
of the surface wave structure were compared with those obtained by Angulo
and Chang [1959] and the differences noted. They used a formal factorization
procedure in their paper. The graphical results for the TE excitation of the
surface wave structure and the graphical results for both TE and TEM excita-
tions of the incompressible, isotropic, plasma slab presented in section 4 have
not, to the best of the author's knowledge, been given elsewhere,

The factorization, one of the key steps, was obtained by a technique
described in this work. The factorization was obtained by taking the limit, as
the transverse dimension approaches infinity, of the function and factorization
appropriate to the related closed-region structure. A closed form of the fac-

torization was obtained only in section 4. In the more diificult problems dis-
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cussed in section 3, the factorization was in a form convenient for numerical
processing.

This technique for obtaining the factorization is certainly applicable
to other open-region problems as discussed in section 2. 5. For exaraple.
this technique should prove useful for finding the electromagnetic fields asso-
ciated with an incompressible, anisotropic, plasma slab when excited by a

truncated parallel plate waveguide.
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APPENDIX

Region of Analyticity of a Function Given by ar. Integral Répresentation

lL.et G(A& ) be defined by equatior (A-1)

aa)= [ gta,3 &7 (A-1)
The conditions urder which G('«) is analytic are given in Noble [1958], page
11, and are presented here for convenienrce.
Theorem: Letg(w,¥)=f(¥?)h(a, ¥ ! sat:sfv the conditions

{i) h(a , ¥ ) is a continuous function of the complex variables & and

where A lies inside a region R and ¥ lies on a contour C,

(12} h{a., ® ) is a regular function of @ in R for every ¥ on ..

(iii) £(°%) has only a finite number of finit¢ discontinuities on C and a
firive rumbe. of maxima and minima or anv finite part of C.

(iv) f{-f} is Lounded except at & fini‘e number of points, If ¥ 0 18

such a point, so that 4(a , P ).—» oo as T then

-~

[3&,’5)&?—"-6%"1 j ala ) '3
- -6

ex'sts waere the noti.tion {C - &) denotes the con.cur C apart from a small
length 4 surveaading ')’0, and lim ( § — 71 denotes the limit as this ex-
cluded length tends to zero. The limit must be apnroached uniformly wher a
lies in ary closed comein R° within R.

(v) If C gces o anfinity then any bounded part of Z must be smooth

and ccnditions (1) and (ii) mu.st be satisfied for any tounded part of C. The in-
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“1.e .ntegral defining G(a& ) must be uniformly convergent when & lies i

anv closed domain R' within R,

Then G(a ) defined by (A-1) is a regular function of & in R.
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13. ABSTRACT

The time-harmonic analysis of three boundary value problems containirng semi-
infinite boundaries is presented. The first problem considered is a parallel ple.e
waveguide with one plate truncated and radiating into free spiace, The excitation
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13. ABSTI'*CT (continued)

of tue function and factorizaiion appropriate to the closed-region strurture. By
this means the factorization and hence the solution to the open-region ooundary
value ;roblen is outai:=d.

It is also fourd that the limiting procedure may be used to obtain more than
Just the open-region factorization. It is shown that the limi: of the comjlete
ciosed-region soiution becomes the open-region scolution. Hence, th s yeild: one
possible method for the solution of § oblems ot this type.

The results ot _ht aumerical omputations are presentea. Th se include the
sverage power reflc¢cted in the waveguide, the sverage power radiated ia the space
wave, the av rage power transmitted by the s rface waves, and tie radiatim pa tera
of the spr_.e wave.




